Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\) cộng lại ta được
=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>1\)
+\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\) cộng lại
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)
Lời giải:
Ta có:
\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))
Hoàn toàn tương tự:
\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Ta có đpcm.
a,A=(abc,acb,cab,cba,bac,bca)
b,abc+acb=499 suy ra b+c=9 vì nếu b+c (1) có nhớ thi c+b (2) có kết quả khác 9. Nếu b+c không nhớ suy ra a+a=4 suy ra a=2 vì a=a. Suy ra tổng a+b+c=2+9=11