K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 3 2021

\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)

\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)

Ta có:

\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 2

Lời giải:
Áp dụng BĐT AM-GM:

$\frac{a^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3}{4}a$

$\frac{b^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq \frac{3}{4}b$

$\frac{c^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3}{4}c$

Cộng 3 BĐT trên và thu gọn:

$\Rightarrow \frac{a^3}{(a+b)(a+c)}+\frac{b^3}{(b+a)(b+c)}+\frac{c^3}{(c+a)(c+b)}\geq \frac{1}{4}(a+b+c)=\frac{1}{4}.3=\frac{3}{4}$

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
17 tháng 12 2020

\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)

\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
20 tháng 12 2020

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Điều này hiển nhiên đúng do:

\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)

Dấu "=" xảy ra khi \(a=b=c\)