K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Theo t/ch DTSBN ta có

(a+b-c+a-b+c-a+b+c)/(c+b+a)

=(a+b+c)/(a+b+c)=1

28 tháng 7 2016

Ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

18 tháng 8 2016

có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1

=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c

    a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b

     -a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a

có M= ( a+b)(b+c)(c+a) / abc 

        = 2c . 2a . 2b / abc

        = 8abc/abc

        =8

vậy M=8

       = 2c . 2a.

18 tháng 8 2016

câu cuối sau phần kết luận  = 2c . 2a bỏ nha ( viết vội quá)

14 tháng 8 2016

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)                                                                                                                  (Tính chất dãy các tỉ số bằng nhau)                                                                  Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)

23 tháng 9 2019

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath

27 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có 

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b-c+c=c+c\\a-b+b+c=b+b\\-a+a+b+c=a+a\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}}}\)

Thay các tổng a + b ; a + c ; b + c vào biểu thức M , ta có :

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

21 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\) 

\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)

\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)

Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

19 tháng 6 2019

8 nha !

9 tháng 10 2019

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

9 tháng 10 2019

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4

21 tháng 11 2016

=0.chú ý 2  phần trung tỉ và ngoại tỉ
 

21 tháng 11 2016

Bạn giải cụ thể ra cho mình đc ko