K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Áp dụng BĐT cauchy-schwarz:

\(\sum\dfrac{a^4b}{2a+b}=\sum\dfrac{a^4b^2}{2ab+b^2}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{\left(a+b+c\right)^2}\)

giờ ta chỉ cần có:\(a^2b+b^2c+c^2a\ge a+b+c\)

Áp dụng AM-GM:

\(a^2b+\dfrac{1}{b}\ge2a\)..tương tự ,ta suy ra:

\(a^2b+b^2c+c^2a\ge2\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)(*)

Theo giả thiết: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)

Dễ dàng suy ra được \(a+b+c\ge3\) ( từ BĐT \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\))

theo đó thì \(a+b+c\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Nên từ (*) ta có đpcm.

Dấu = xảy ra khi a=b=c=1

26 tháng 9 2017

quá giỏi luôn

5 tháng 6 2021

\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bất đẳng thức hiển nhiên đúng

Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi  \(a=b=c\)

-Chúc bạn học tốt-

Bạn giải thích hộ mình từ dòng 1 xuống dòng 2 đc ko ạ ?

6 tháng 3 2021

* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)

Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)

Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)

Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 3 2021

cảm ơn ạ

7 tháng 9 2021

\(\dfrac{bc}{a+b+c+a}\le\dfrac{bc}{4}\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\ \dfrac{ac}{b+c+a+b}\le\dfrac{ac}{4}\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)\\ \dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{a+b}\left(\dfrac{bc}{4}+\dfrac{ac}{4}\right)+\dfrac{1}{a+c}\left(\dfrac{bc}{4}+\dfrac{ab}{4}\right)+\dfrac{1}{b+c}\left(\dfrac{ac}{4}+\dfrac{ab}{4}\right)\\ =\dfrac{1}{a+b}\cdot\dfrac{c\left(a+b\right)}{4}+\dfrac{1}{a+c}\cdot\dfrac{b\left(a+c\right)}{4}+\dfrac{1}{b+c}\cdot\dfrac{a\left(b+c\right)}{4}\\ =\dfrac{c}{4}+\dfrac{b}{4}+\dfrac{a}{4}\\ =\dfrac{a+b+c}{4}\left(đfcm\right)\)

2 tháng 7 2021

\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)

áp dụng BDT CAUCHY SCHAWRZ

\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)

\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)

5 tháng 7 2021

cái chỗ bđt cauchy là bđt gì bạn có thể ghi cụ thể nó ra được ko ạ