Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Ta tách VT=A+B và xét
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu = khi a=b=c=1
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Ta tách VT = A + b và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))
Dấu = khi a = b = c = 1 .
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
Cô-si Engel :
\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\)
\(\ge\frac{a+b+c+2.3\sqrt[3]{\sqrt{ab}.\sqrt{bc}.\sqrt{ac}}}{a+b+c+6}=\frac{a+b+c+6\sqrt[3]{abc}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)
Nguyễn Linh Chi Thanks cô,e đổi biến lộn ạ:(
Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
Ta có:
\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)
\(=\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\)
\(=\frac{1}{1+\frac{2y}{x}}+\frac{1}{1+\frac{2z}{y}}+\frac{1}{1+\frac{2x}{z}}\)
\(=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)
\(=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra tại \(a=b=c=1\)
MÌnh nghĩ đề phải là tìm GTLN chứ
Ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=2\)
\(\Rightarrow\frac{1}{a+b+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\)
Tương tự: \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}}\)
\(\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)
Nhân lại ta có: \(\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Dấu = khi a=b=c=1/4
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\)(AM-GM)
\(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b\)
\(\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
cộng vế với vế \(\Rightarrow A\ge\frac{3}{4}\left(a+b+c-1\right)\ge\frac{3}{4}\left(3\sqrt[3]{abc}-1\right)=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
Thay abc=1 vào thử tìm xem có ra GTNN ko