Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tập hợp số nguyên không có khái niệm hai số nguyên tố cùng nhau. Trong bài này phải nói trị tuyệt đối của chúng đôi một nguyên tố cùng nhau.
Không thể có \(\left|c\right|>1\) vì c có ít nhất một ước nguyên tố \(p\ge2\)
Do đó p phải là ước của a hoặc b. Vô lý vì (a;c) = ( b;c) = 1; từ đó suy ra \(c\in\left\{-1;1\right\}\)
*TH1 : \(c=-1\)
\(\Rightarrow-\left(a+b\right)=ab\)
\(\Rightarrow ab-\left[-\left(a+b\right)\right]=0\)
\(\Rightarrow ab+a+b+1=0+1\)
\(\Rightarrow\left(ab+a\right)+\left(b+1\right)=1\)
\(\Rightarrow a\left(b+1\right)+\left(b+1\right)=1\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)=1\)
Do đó suy ra \(a+1=b+1=-1\) ( Chúng không thể bằng 1 vì nếu như vậy a=b=0 )
\(\Rightarrow a=b=-2\)
Do đó (a;b) = 2 \(\ne\)1 ( trái với giả thiết )
*TH2 : \(c=1\)
\(\Rightarrow a+b=ab\)
\(\Rightarrow ab-\left(a+b\right)+1=0+1=1\)
\(\Rightarrow ab-a-b+1=1\)
\(\Rightarrow\left(ab-a\right)-\left(b-1\right)=1\)
\(\Rightarrow a\left(b-1\right)-\left(b-1\right)=1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Rightarrow a-1=b-1=1\) ( chúng không thể bằng -1 vì như vậy thì a = b = 0 )
\(\Rightarrow a=b=2\)
\(\Rightarrow\left(a;b\right)=2\ne1\) (trái với giả thiết )
Do đó không tồn tại a, b, c thỏa mãn đề bài.
+)Ta có:a+b\(⋮\)c
a+c\(⋮\)b
b+c\(⋮\)a
=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c
=>a+b+a+c+b+c\(⋮\)a+b+C
=>2a+2b+2c\(⋮\)a+b+c
=>2.(a+b+c)\(⋮\)a+b+c
=>a+b+c\(⋮\)2
Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2
TH2:a và c là số nguyên tố lẻ;b=2
TH3:a và b là số nguyên tố lẻ,c=2
Vậy cả 3 TH trên đều thỏa mãn
Chúc bn học tốt
+ b =0 => a =0 loại
Nếu b <0 =>/a/ = b2(b-c) <0 vô lí
Vậy b > 0 ; c =0 ; a <0 sao cho /a/ = b3
Ta có:
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)
\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)
\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)
Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)
do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).
Một cách tương tự ta cũng suy ra được \(n\ge m\).
Do đó \(m=n\).
Khi đó \(mn=m^2\)là một số chính phương.