Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a-1\right)^2\ge0;\forall a\) (1)
\(\left(b-1\right)^2\ge0;\forall b\) (2)
\(\left(c-1\right)^2\ge0;\forall c\) (3)
Cộng từng vế (1);(2);(3) ta được:
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-2\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) ( đfcm )
Ta có:
(a−1)2≥0;∀a(a−1)2≥0;∀a (1)
(b−1)2≥0;∀b(b−1)2≥0;∀b (2)
(c−1)2≥0;∀c(c−1)2≥0;∀c (3)
Cộng từng vế (1);(2);(3) ta được:
(a−1)2+(b−1)2+(c−1)2≥0(a−1)2+(b−1)2+(c−1)2≥0
⇔a2−2a+1+b2−2b+1+c2−2c+1≥0⇔a2−2a+1+b2−2b+1+c2−2c+1≥0
⇔a2+b2+c2−2(a+b+c)+3≥0⇔a2+b2+c2−2(a+b+c)+3≥0
⇔a2+b2+c2+3≥2(a+b+c)⇔a2+b2+c2+3≥2(a+b+c) ( đpcm ).
a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)
b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)
Dấu = xra khi a=b=c=1
b)
\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)
Dấu "=" xảy ra khi a=b=c=1
Xét hiệu:
3(a2 + b2 + c2) - (a + b + c)2
= 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac
= (a - b)2 + (b - c)2 + (c - a)2 ≥ 0
(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c
Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.
Đáp án cần chọn là: C
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
xét hiệu
\(\dfrac{a^2+b^2+c^2}{3}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=> \(\dfrac{3\left(a^2+b^2+c^2\right)}{9}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=>\(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2ac-2bc\ge0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
<=> (a-b)2 +(b-c)2 +(c-a)2 ≥ 0 (luôn đúng)
=> đpcm)
mk tg chỉ luôn lớn hơn 0 chưa