Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)
sau đó chứng minh tương tự và cộng theo từng vế thôi
Mình hướng dẫn nhé : Phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Từ đó suy ra đpcm
\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)=\frac{a+b}{a-b}\cdot\frac{a-b}{a+b}+\frac{a+b}{a-b}\left(\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)
\(=1+\frac{a+b}{a-b}\cdot\frac{\left(b-c\right)\left(c+a\right)+\left(c-a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}=1+\frac{a+b}{a-b}\cdot\frac{bc+ab-c^2-ac+bc+c^2-ab-ac}{-a\cdot-b}\)
\(=1+\frac{\left(a+b\right)\left(2bc-2ac\right)}{\left(a-b\right)ab}=1+-\frac{2c\left(a+b\right)\left(a-b\right)}{\left(a-b\right)ab}=1+\frac{-2c\cdot-c}{ab}=1+\frac{2c^2}{ab}\left(đpcm\right)\)
Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)thay vào biểu thức đã cho:
\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)\(=\frac{-c}{a-b}\left(\frac{a-b}{-c}+\frac{b-c}{-a}+\frac{c-a}{-b}\right)\)
\(=1+\frac{-c\left(b-c\right)}{-a\left(a-b\right)}+\frac{-c\left(c-a\right)}{-b\left(a-b\right)}=1+\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\)
\(=1+\frac{bc\left(b-c\right)}{ab\left(a-b\right)}+\frac{ac\left(c-a\right)}{ab\left(a-b\right)}=1+\frac{b^2c-bc^2+ac^2-a^2c}{ab\left(a-b\right)}\)
\(=1+\frac{c\left(b^2-a^2\right)-\left(bc^2-ac^2\right)}{ab\left(a-b\right)}=1+\frac{c\left(b-a\right)\left(a+b\right)-c^2\left(b-a\right)}{ab\left(a-b\right)}\)
\(=1+\frac{\left(b-a\right).\left[c\left(a+b\right)-c^2\right]}{ab\left(a-b\right)}=1+\frac{\left(a-b\right).\left[c^2-c\left(a+b\right)\right]}{ab\left(a-b\right)}\)
\(=1+\frac{c^2-\left(-c\right).c}{ab}=1+\frac{c^2-\left(-c^2\right)}{ab}=1+\frac{2c^2}{ab}\)(đpcm).
Ta có
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\\\frac{b}{c-a}=-\frac{a}{b-c}-\frac{c}{a-b}\\\frac{c}{a-b}=-\frac{a}{b-c}-\frac{b}{c-a}\end{matrix}\right.\) (1)
Mà
\(\left\{\begin{matrix}\frac{a}{\left(b-c\right)^2}=\frac{a}{b-c}.\frac{1}{b-c}\\\frac{b}{\left(c-a\right)^2}=\frac{b}{c-a}.\frac{1}{c-a}\\\frac{c}{\left(a-b\right)^2}=\frac{c}{a-b}.\frac{1}{a-b}\end{matrix}\right.\)
Ta có : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
\(\Rightarrow\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)
Thay điều (1) vào biểu thức ta có :
\(\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)
\(\Rightarrow\left(-\frac{b}{c-a}-\frac{c}{a-b}\right).\frac{1}{b-c}+\left(-\frac{a}{b-c}-\frac{c}{a-b}\right).\frac{1}{c-a}+\left(-\frac{a}{b-c}-\frac{b}{c-a}\right).\frac{1}{a-b}=0\)
\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(b-c\right)\left(c-a\right)}-\frac{c}{\left(a-b\right)\left(c-a\right)}-\frac{a}{\left(b-c\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{a}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(a-b\right)\left(b-c\right)}-\frac{c}{\left(c-a\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\frac{b-a}{\left(c-a\right)\left(b-c\right)}-\frac{c-a}{\left(a-b\right)\left(b-c\right)}-\frac{c-b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\left[\frac{b+a}{\left(c-a\right)\left(b-c\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(b+a\right)\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(c+a\right)\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(c+b\right)\left(b-c\right)^2\left(c-a\right)\left(a-b\right)}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right]=0\)
\(\Rightarrow-\left\{\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(b+a\right)\left(a-b\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)\right]}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right\}=0\)
\(\Rightarrow-\left[\frac{\left(b+a\right)\left(b-a\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(a^2-b^2\right)+\left(c^2-a^2\right)+\left(b^2-c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(-b^2+b^2\right)+\left(-a^2+a^2\right)+\left(-c^2+c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{0}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow0=0\) ( đpcm )
Ta có:
\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(=\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
Xét:
\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{b\left(b-c\right)+a\left(c-a\right)}{ab}\right]=1+\dfrac{c}{a-b}\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab}\right]=1+\dfrac{c}{a-b}.\dfrac{\left(b-a\right)\left(a+b-c\right)}{ab}\)
\(=1-\dfrac{c\left(a+b-c\right)}{ab}=1-\dfrac{c.\left(-2c\right)}{ab}=1+\dfrac{2c^2}{ab}\) (do \(a+b+c=0\Rightarrow a+b=-c\))
Tương tự:
\(\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2a^2}{bc}\)
\(\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2b^2}{ca}\)
\(\Rightarrow P=3+2\left(\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\right)=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Mặt khác ta có đằng thức quen thuộc:
Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
\(\Rightarrow P=3+\dfrac{2.3abc}{abc}=9\)
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
Ta có:
\(a^2-b=b^2-c=c^2-a\Rightarrow\hept{\begin{cases}a^2-b^2=b-c\\b^2-c^2=c-a\\c^2-a^2=a-b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a+b=\frac{b-c}{a-b}\\b+c=\frac{c-a}{b-c}\\c+a=\frac{a-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=\frac{b-c}{a-b}.\frac{c-a}{b-c}.\frac{a-b}{c-a}=1\)
Ta có: \(a^2-b=b^2-c\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\Rightarrow a+b=\frac{b-c}{a-b}\)
Tương tự CM được: \(b+c=\frac{c-a}{b-c}\) và \(c+a=\frac{a-b}{c-a}\)
Khi đó:
\(\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(=\left(\frac{a-b}{c-a}+1\right)\left(\frac{c-a}{b-c}+1\right)\left(\frac{b-c}{a-b}+1\right)\)
\(=\frac{c-b}{c-a}\cdot\frac{b-a}{b-c}\cdot\frac{a-c}{a-b}=-1\)
Vì a2 - b = b2 - c = c2 - a
Ta có a2 - b = b2 - c
=> (a - b)(a + b) = b - c
=> a + b + 1 = \(\frac{a-c}{a-b}\)
Tương tự ta có : b + c + 1 = \(\frac{b-a}{b-c}\)
a + c + 1 =\(\frac{b-c}{a-c}\)
Khi đó (a + b + 1)(b + c + 1)(a + c + 1) = \(\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{b-c}{a-c}=-1\)(đpcm)