Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)
Dấu "=" xảy ra <=> a=b
Áp dụng BĐT (*) vào bài toán ta có:
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Tiếp tục áp dụng BĐT (*) ta có:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:
\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra <=> a=b=c
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
Đặt a+b-c=x
-a+b+c=y
a-b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Đặt a+b‐c=x
‐a+b+c=y
a‐b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)
\(\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
Bài toán cần chứng minh:
\(\frac{\left(x+y\right)\left(z+x\right)}{4x}+\frac{\left(x+y\right)\left(y+z\right)}{4y}+\frac{\left(y+z\right)\left(z+x\right)}{4z}\ge x+y+z\)
Ta có:
\(VT=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\)
\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x+y+z\right)xyz\)
\(=x+y+z=VP\)
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
Câu hỏi của ttpq_Trần Thanh Phương - Toán lớp 8 - Học toán với OnlineMath tk