K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Gọi cái đó là P

Đặt \(\left\{{}\begin{matrix}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=y+z\\b=z+x\\c=x+y\end{matrix}\right.\)

Thì ta có:

\(P=\dfrac{\left(x+z\right)\left(y+z\right)}{2z}+\dfrac{\left(x+y\right)\left(z+y\right)}{2y}+\dfrac{\left(z+x\right)\left(y+x\right)}{2x}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow2x^2y^2+2y^2z^2+2z^2x^2-2xyz^2-2yzx^2-2zxy^2\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0\) (đúng)

\(\RightarrowĐPCM\)

NV
22 tháng 12 2020

\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)

\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân

16 tháng 4 2017

đặt\(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{x+z}{2}\\b=\dfrac{x+y}{2}\\c=\dfrac{y+z}{2}\end{matrix}\right.\)

sau đó thay vào bt rồi tính là ra

26 tháng 6 2017

Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\) có:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{a^2b}{b}+\dfrac{b^2c}{c}+\dfrac{c^2a}{a}\)

\(=a^2+b^2+c^2\ge ab+bc+ca\)

Dấu " = " khi a = b = c = 1

Vậy...

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

\(\frac{a^2+bc}{b+c}+\frac{b^2+ac}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c\)

\(\Leftrightarrow \frac{a^2+bc}{b+c}-c+\frac{b^2+ac}{a+c}-a+\frac{c^2+ab}{a+b}-b\geq 0\)

\(\Leftrightarrow \frac{a^2-c^2}{b+c}+\frac{b^2-a^2}{a+c}+\frac{c^2-b^2}{a+b}\geq 0\)

\(\Leftrightarrow a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\geq 0\)

\(\Leftrightarrow \frac{a^2(a-b)(a+b)+b^2(b-c)(b+c)+c^2(c-a)(c+a)}{(a+b)(b+c)(c+a)}\geq 0\)

\(\Leftrightarrow a^2(a^2-b^2)+b^2(b^2-c^2)+c^2(c^2-a^2)\geq 0\)

\(\Leftrightarrow a^4+b^4+c^4-(a^2b^2+b^2c^2+c^2a^2)\geq 0\)

\(\Leftrightarrow \frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2}{2}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

NV
12 tháng 1 2022

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)

Tương tự:

\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

24 tháng 3 2023

cho em hỏi tại sao 1/a+b-c +1/b+c-a>=4/a+b-c+b+c-a vậy ạ

 

26 tháng 1 2021

 +  +  ≥ 3.

Đặt b + c – a = x > 0 (1); a + c – b = y > 0  (2); a + b – c = z > 0  (3)

Cộng (1) và (2) => b + c – a + a + c – b = x + y ⇔ 2c = x + y ⇔ c = 

Tương tự a =  ; b = 

Do đó  +  +  =  +   +  = ( +  +  +  +  + )

[( + ) + ( + ) + ( + )] ≥ (2 + 2 + 2) = 3.

Vậy  +  +  ≥ 3.

26 tháng 1 2021

tham khảo ạ