K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)

\(\Leftrightarrow\)  \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)

\(\Leftrightarrow\)  \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)

\(\Leftrightarrow\)  \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)

\(\Leftrightarrow\)  \(a-b=c-b=c-a\)  \(\Leftrightarrow\)  \(a=b=c\)  

Với   \(a,b,c\)   là  \(3\)  cạnh của \(\Delta ABC\)  thì  \(\Delta ABC\)  đều

21 tháng 2 2016

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)

Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)

Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.

13 tháng 8 2017

chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều

22 tháng 8 2015

CM bất đảng thức :

 \(a+b\ge2\sqrt{ab}\)

XH : a + b -  2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Áp dụng BĐT : ... 

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

22 tháng 8 2015

uk. bạn hok trường nào z

28 tháng 5 2018

3 cạnh của một tam giác là ba số dương 

áp dụng bất đẳng thức cauchy cho hai số dương

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8abc\)\

Dấu "=" xảy ra khi a = b = c

mà a,b,c  là 3 cạnh của một tam giác đều => a=b=c => (a+b)(b+c)(c+a)=8abc

28 tháng 5 2018

a,b,c là 3 cạnh tam giác nên a>0,b>0,c>0

\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2=8abc\)

\(\Leftrightarrow a^2b+bc^2+ab^2+ac^2+a^2c+ac^2-6abc=0\)

\(\Leftrightarrow\left(a^2b+bc^2-2abc\right)+\left(ab^2+ac^2-2abc\right)+\left(a^2c+b^2c-2abc\right)=0\)

\(\Leftrightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

\(\Leftrightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2=0\)

Mà b>0;(a-c)^2>=0 => b(a-c)^2>=0;

a>0;(b-c)^2>=0 => a(b-c)^2 >=0;

c>0;(a-b)^2>=0 => c(a-b)^2>=0

Do đó: \(b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a-c=0\\b-c=0\\a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=c\\b=c\\a=b\end{cases}}}\Leftrightarrow a=b=c\)

=> a,b,c là 3 cạnh của một tam giác đều

13 tháng 10 2016

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều