Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)
Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)
Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.
CM bất đảng thức :
\(a+b\ge2\sqrt{ab}\)
XH : a + b - 2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Áp dụng BĐT : ...
Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé!
3 cạnh của một tam giác là ba số dương
áp dụng bất đẳng thức cauchy cho hai số dương
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8abc\)\
Dấu "=" xảy ra khi a = b = c
mà a,b,c là 3 cạnh của một tam giác đều => a=b=c => (a+b)(b+c)(c+a)=8abc
a,b,c là 3 cạnh tam giác nên a>0,b>0,c>0
\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2=8abc\)
\(\Leftrightarrow a^2b+bc^2+ab^2+ac^2+a^2c+ac^2-6abc=0\)
\(\Leftrightarrow\left(a^2b+bc^2-2abc\right)+\left(ab^2+ac^2-2abc\right)+\left(a^2c+b^2c-2abc\right)=0\)
\(\Leftrightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2=0\)
Mà b>0;(a-c)^2>=0 => b(a-c)^2>=0;
a>0;(b-c)^2>=0 => a(b-c)^2 >=0;
c>0;(a-b)^2>=0 => c(a-b)^2>=0
Do đó: \(b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a-c=0\\b-c=0\\a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=c\\b=c\\a=b\end{cases}}}\Leftrightarrow a=b=c\)
=> a,b,c là 3 cạnh của một tam giác đều
Ta có
\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)
\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)
\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)
Nhân vế theo vế ta được
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)
Dấu = xảy ra khi a = b = c hay tam giác ABC đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)
\(\Leftrightarrow\) \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)
\(\Leftrightarrow\) \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)
\(\Leftrightarrow\) \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)
\(\Leftrightarrow\) \(a-b=c-b=c-a\) \(\Leftrightarrow\) \(a=b=c\)
Với \(a,b,c\) là \(3\) cạnh của \(\Delta ABC\) thì \(\Delta ABC\) đều