Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Mincopxki:
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(a+b+c\right)^2}\)
\(=\sqrt{2\left(a+b+c\right)^2}=\sqrt{2}\left(a+b+c\right)\)
Cách này có được không ạ?Tình cờ nghĩ ra thôi ạ!
Ta chứng minh BĐT phụ: \(\sqrt{a^2+b^2}\ge\frac{1}{\sqrt{2}}\left(a+b\right)\) với a,b > 0 (do a,b,c là độ dài 3 cạnh tam giác)
Bình phương hai vế,ta cần c/m \(a^2+b^2\ge\frac{1}{2}\left(a^2+b^2+2ab\right)\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (đúng).Dấu "=' xảy ra khi a= b.
Do đó \(\sqrt{a^2+b^2}\ge\frac{1}{\sqrt{2}}\left(a+b\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế,ta có đpcm.
Có anh bảo e bình phương nên e cũng bình phương thử xem ạ:3 ( Hình như cái này là BĐT Mincốpski )
\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+b\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow4\left(a^2+b^2\right)\left(c^2+d^2\right)\ge4a^2c^2+8abcd+4b^2d^2\)
\(\Leftrightarrow4a^2d^2-8abcd+4b^2c^2\ge0\)
Đến đây bí rồi:((((((
Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có:
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự và cộng lại ta được BĐT bên trái
Dấu "=" xảy ra khi \(a=b=c\)
Bên phải:
Áp dụng BĐT Bunhiacopxki:
\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)
ta có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
chứng minh tương tự ta cũng có
\(b+c\le\sqrt{2\left(b^2+c^2\right)};c+a\le\sqrt{2\left(c^2+a^2\right)}\)
cộng các vế của các bdt lại , rồi bạn đưa \(\sqrt{2}\)ra ngoài, bạn sẽ có dpcm
( phần chứng minh \(< \sqrt{3}\left(a+b+c\right)\)bạn tự chứng minh nhá) :))
Áp dụng BĐT Mincopski ta có:
\(VT=\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-c\right)^2}+\sqrt{c^2+\left(1-b\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(3-a-b-c\right)^2}\)
Đặt \(a+b+c=x>0\) thì ta có:
\(\ge\sqrt{x^2+\left(3-x\right)^2}=\sqrt{2x^2-6x+9}\)
\(=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}}\ge\sqrt{\frac{9}{2}}=\frac{3\sqrt{2}}{2}\)
ÁP dụng BĐT bu nhi a cốp xki :
\(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a+b\right)^2\Leftrightarrow\sqrt{a^2+b^2}\ge\frac{1}{\sqrt{2}}\left(a+b\right)\)(1)
CM tương tự \(\sqrt{b^2+c^2}\ge\frac{1}{\sqrt{2}}\left(b+c\right)\left(2\right);\sqrt{c^2+a^2}\ge\frac{1}{\sqrt{2}}\left(c+a\right)\left(3\right)\)
Cộng vế với vế của (1) (2) vs (3) =>ĐPCM
Dấu '' = '' xảy ra khi a = b =c