Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn có thể vào mục câu hỏi tương tự
http://olm.vn/hoi-dap/question/162856.html
bài 1
ÁP dụng AM-GM ta có:
\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)
tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)
công tất cả lại ta có:
\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)
\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)
Thay \(a+b+c=3\)vào ta được":
\(P+2\ge3\Leftrightarrow P\ge1\)
Vậy Min là \(1\)
dấu \(=\)xảy ra khi \(a=b=c=1\)
\(K\le\Sigma\sqrt{12a+\left(b+c\right)^2}=\Sigma\sqrt{12a+\left(3-a\right)^2}=\Sigma\sqrt{\left(a+3\right)^2}=12\)
dấu "=" xảy ra khi \(a=b=0;c=3\) và các hoán vị
Cách 1:Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow1-3a\le0\)
Ta có:
\(P=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\)
\(\le\frac{\left(a+b+c\right)^2}{4}+0=\frac{1}{4}\)
Đẳng thức xảy ra tại \(a=b=\frac{1}{2};c=0\)
Cách 2:
Ta sẽ đi chứng minh \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow\Sigma a^2b+\Sigma ab^2-12abc\le\Sigma a^3+3\Sigma a^2b+3\Sigma ab^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2-18abc\)
Theo Schur thì \(a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2+3abc\ge\Sigma a^2b+\Sigma ab^2-18abc\)
\(\Rightarrow P\ge\frac{1}{4}\) tại a=b=1/2 ; c=0 và các hoán vị
Cách 3:
\(\frac{1}{4}-P=\frac{\left(a+b+c\right)^3}{4}-\Sigma a^2b-\Sigma ab^2\)
\(=\frac{1}{4}\left(a^3+b^3+c^3-\Sigma a^2b-\Sigma ab^2+3abc\right)+\frac{3}{4}abc\ge0\) ( đúng theo Schur )
Vậy \(P\le\frac{1}{4}\)
Nhớ không nhầm thì hình như trong này có 1 cách của tth_new nhé !
Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).
Áp dụng bđt Schwars ta có:
\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).
Đẳng thức xảy ra khi a = b = c = 1.
\(\left(3a+2b\right)\left(3a+2c\right)=16bc\Leftrightarrow\dfrac{3a+2b}{b}.\dfrac{3a+2c}{c}=16\Leftrightarrow\left(3x+2\right)\left(3y+2\right)=16\) với \(x=\dfrac{a}{b};y=\dfrac{a}{c}\).
Áp dụng bất đẳng thức AM - GM: \(16=\left(3x+2\right)\left(3y+2\right)\le\dfrac{\left(3x+3y+4\right)^2}{4}\Leftrightarrow x+y\le\dfrac{4}{3}\);
\(xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{4}{9}\).
Ta có: \(P=\dfrac{a^2+2a\left(b+c\right)+\left(b+c\right)^2}{a\left(b+c\right)}=\dfrac{a}{b+c}+\dfrac{b+c}{a}+2=\dfrac{xy}{x+y}+\dfrac{x+y}{xy}=\left(\dfrac{xy}{x+y}+\dfrac{x+y}{9xy}\right)+\dfrac{8\left(x+y\right)}{9xy}\ge2\sqrt{\dfrac{xy}{x+y}.\dfrac{x+y}{9xy}}+\dfrac{8\left(x+y\right)}{\dfrac{9\left(x+y\right)^2}{4}}=\dfrac{2}{3}+\dfrac{32}{9\left(x+y\right)}\ge\dfrac{2}{3}+\dfrac{32}{12}=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).
Đẳng thức xảy ra khi \(3a=2b=2c>0\).
Vậy...
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
Theo nguyên lí Dirichlet, trong ba số a2, b2, c2 tồn tại 2 số cùng phía với 1.
Giả sử hai số đó là a2 và b2.
Ta có \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow\left(a^2+2\right)\left(b^2+2\right)\ge3\left(a^2+b^2+1\right)\)
\(\Rightarrow\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a^2+b^2+1\right)\left(1+1+c^2\right)\ge3\left(a+b+c\right)^2\) (Theo bất đẳng thức Cauchy - Schwarz).
Mà a + b + c = 3 nên \(S\ge27\).
Đẳng thức xảy ra khi a = b = c = 1.
Vậy Min S = 27 khi a = b = c = 1.