K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Ta có : \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

Từ \(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{1}{c}-\frac{1}{b}\Leftrightarrow a-b=\frac{b-c}{bc}\)(1)

Tương tự : \(b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow b-c=\frac{c-a}{ac}\) (2) ; \(c+\frac{1}{a}=a+\frac{1}{b}\Leftrightarrow c-a=\frac{a-b}{ab}\)(3)

Nhân (1) , (2), (3) theo vế :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)

Vì abc khác 1 nên\(a^2b^2c^2\ne1\) \(\Rightarrow1-\frac{1}{a^2b^2c^2}\ne0\)

Do đó \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\Rightarrow\)a = b hoặc b = c hoặc c = a

  • Với a = b , từ giả thiết ta có b = c => a = b = c
  • Với b = c , từ giả thiết ta có c = a => a = b = c
  • Với c = a , từ giả thiết ta có a = b => a = b = c

Vậy a = b = c 

6 tháng 12 2017

ap dung tinh chat day ti so bang nhau  la dc

5 tháng 4 2017

a) đề thiếu òi bạn à            

22 tháng 2 2020

k cần nữa ạ

22 tháng 4 2015

Do abc = 1 nên \(ca=\frac{1}{b};1=abc\)

 \(\Rightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)

\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+\frac{cb}{b}+\frac{b}{b}}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(=\frac{1+b+bc}{bc+b+1}=1\) => ĐPCM

22 tháng 6 2021

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM