K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=2\)

\(\Rightarrow a+b-c=2c\Rightarrow a+b=3c\)

      \(b+c-a=2a\Rightarrow b+c=3a\)

       \(c+a-b=2b\Rightarrow c+a=3b\)

Ta có: \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(a+\frac{c}{b}\right)\)

               \(=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\)

                \(=\frac{3c}{a}.\frac{3b}{c}.\frac{3a}{b}\)

                   \(=27\)

30 tháng 11 2020

ai biết k k cũng cần

21 tháng 8 2021

Ta có :
a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1 

→a+bc−1=b+ca−1=c+ab−1=1→a+bc−1=b+ca−1=c+ab−1=1

→a+bc=b+ca=c+ab=2→a+bc=b+ca=c+ab=2

→a+bc.b+ca.c+ab=2.2.2=8→a+bc.b+ca.c+ab=2.2.2=8

→a+ba.b+cb.c+ac=8→a+ba.b+cb.c+ac=8

→(1+ba)(1+cb)(1+ac)=8→(1+ba)(1+cb)(1+ac)=8

→M=8

Bạn nhớ là cái này ko phải mình lm đc đây làm mình tìm đc thui nhá =<

12 tháng 10 2017

câu hỏi là j

10 tháng 5 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)\)

\(=-\frac{c}{b}\cdot-\frac{a}{c}\cdot-\frac{b}{a}=\frac{-c\cdot-a\cdot-b}{b\cdot c\cdot a}=-1\cdot-1\cdot-1=-1\)

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :> 

12 tháng 10 2019

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)

=> \(\frac{a+b}{c}-1=\frac{b+c}{a}-1\)\(=\frac{c+a}{b}-1\)

=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

Xét 2 trường hợp

+) Nếu a+b+c \(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(vì a+b+c \(\ne\)0)

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c +a=2b\end{cases}}=>a=b=c\)\(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)=> \(a=b=c\)

Thay vào B => B=\(\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\)=2.2.2= 8

+) Nếu a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)Thay vào B

B=\(\left(1+\frac{-\left(a+c\right)}{a}\right)\)\(\left(1+\frac{-\left(b+c\right)}{c}\right)\)\(\left(1+\frac{-\left(a+b\right)}{b}\right)\)

=>B= \(\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)( Vì a,b,c \(\ne\)0 nên abc\(\ne\)0)

Vậy B= 8 nếu a+b+c khác 0 ; B=-1 nếu a+b+c =0

12 tháng 10 2019

Xin lỗi bạn mk thiếu ở trường hợp 1

=>\(\hept{\begin{cases}a+b=2c\\c+b=2a\\a+c=2b\end{cases}}\)=>\(a=b=c\)