K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

áp dụng cô si ta có : \(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

cộng quế theo quế ta có : \(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

3 tháng 8 2018

Cách khác :3

\(a+b+c\text{≥}\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(2\left(a+b+c\right)\text{≥}2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ac}+a\text{ ≥}0\)

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\text{≥}0\left(luôn-đg\right)\)

\("="\text{⇔}a=b=c\)

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

14 tháng 10 2018

Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*)   (Do a+b+c = 3)

Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:

Áp dụng BĐT AM-GM cho 3 số không âm:

\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)

Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)

Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)

=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).

Dấu "=" xảy ra <=> a=b=c=1.

6 tháng 7 2019

Đề thiếu không bạn ?

6 tháng 7 2019

ko bạn, đè như thế

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

12 tháng 1 2021

Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).

Đặt biểu thức ở VT là A. Ta có: 

\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).

Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).

Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.

Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).

Đẳng thức xảy ra khi a = b = c = 3.

Vậy...

 

NV
12 tháng 1 2021

Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)

\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)

\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

18 tháng 6 2020

Cho em hỏi sao god nghĩ ra được cách làm này vậy ạ?

NV
18 tháng 6 2020

\(VT=\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(a+b+c\right)\)

\(VT\ge\frac{1}{2}\left(\frac{a^2}{b}-a+b+b\right)+\frac{1}{2}\left(\frac{b^2}{c}-b+c+c\right)+\frac{1}{2}\left(\frac{c^2}{a}-c+a+a\right)\)

\(VT\ge\sqrt{\left(\frac{a^2}{b}-a+b\right).b}+\sqrt{\left(\frac{b^2}{c}-b+c\right).c}+\sqrt{\left(\frac{c^2}{a}-c+a\right).a}\)

\(VT\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)