K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Vì \(a,b,c\in\text{N*}\)nên

\(\hept{\begin{cases}a\ge1\\b\ge1\\c\ge1\end{cases}\Leftrightarrow\hept{\begin{cases}a+b\ge2\\b+c\ge2\\c+a\ge2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2}{a+b}\le1\\\frac{2}{b+c}\le1\\\frac{2}{c+a}\le1\end{cases}}\Leftrightarrow\hept{\begin{cases}1-\frac{2}{a+b}\ge0\\1-\frac{2}{b+c}\ge0\\1-\frac{2}{c+a}\ge0\end{cases}\left(1\right)}\)

Theo đề bài ta có:

\(a+b+c=\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\)

\(\Leftrightarrow a\left(1-\frac{2}{b+c}\right)+b\left(1-\frac{2}{c+a}\right)+c\left(1-\frac{2}{a+b}\right)=0\)

Ma theo (1) thì \(a\left(1-\frac{2}{b+c}\right)+b\left(1-\frac{2}{c+a}\right)+c\left(1-\frac{2}{a+b}\right)\ge0\)

Dấu = xảy ra khi \(a=b=c=1\)

31 tháng 3 2018

đề trường nào đây bạn

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

12 tháng 3 2021

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow abc\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

CHÚC BẠN HỌC TỐT

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

Vậy \(E=0\)

9 tháng 2 2019

Ta có : \(a^2+b^2=c^2+d^2\)

\(\Leftrightarrow a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

Do \(a+b=c+d\Rightarrow a-c=d-b\)

\(\Rightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

\(\Leftrightarrow\left(a-c\right)\left(a+c-b-d\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-c=0=d-b\\a+c=b+d\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=c\\d=b\end{matrix}\right.\\a+c=b+d\end{matrix}\right.\)

Với a = c ; d = b \(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

Với \(a+c=b+d\)

\(a+b=c+d\)

\(\Rightarrow a+c+a+b=b+d+c+d\)

\(\Rightarrow2a=2d\Rightarrow a=d\Rightarrow a^{2012}=d^{2012}\left(1\right)\)

Lại có : \(a+c=b+d\)

\(\Rightarrow b=c\Rightarrow b^{2012}=c^{2012}\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

haha

17 tháng 9 2018

Hình như sai đề :

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)

\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)

\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )

Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)

\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)

\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )

CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )

Thay ( * ) và ( * ') vào E , ta được :

\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)

\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)

\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)

\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)

\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)

\(=\dfrac{0}{2}=0\)

Vậy \(E=0\)