Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c tm \(ab+bc+ca\le3abc\)
Cm \(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{3}{2}\)
Áp dụng BĐT Cô si cho 3 số dương ta được
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}\)
=> \(a^3+2\ge3a\)
Áp dụng tương tự có
\(ab+1\ge2\sqrt{ab.1}\)
=>\(ab+1\ge2\sqrt{ab}\)
=>\(\frac{a^3+2}{ab+1}\ge\frac{3a}{2\sqrt{ab}}\)
=> \(\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a}{b}}\)
Chứng minh tương tự thì Q\(\ge\frac{3}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)\)
Áp dụng cô si lần nữa thì \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\ge\sqrt{\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}}=1\)
=>Q\(\ge\frac{3}{2}\)
Min Q=3/2.
#)Mất công lắm tui ms tìm đc cách bải này đấy, xin đừng cho ăn gạch đá :v
Ta có (a^3+2)/(ab+1) = 1/2.(2a^3+4)/(ab+1)
Mà 2a^3+4= (a^3+a^3+1) +3
Mặt khác theo BĐT CBS ta có a^3+a^3+1≥ 3a^2
=>2a^3 +4≥ 3(a^2+1)
Tương tự với (b^3 + 2)/(bc + 1) và (c^3 + 2)/(ca + 1)
=>Q ≥ 3/2[(a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1)]
Theo BĐT CBS=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3.căn bặc ba của [(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]
Mà theo bất đẳng thức bunhicốpxki
=>(a^2+1)(b^2+1)≥(ab+1)^2
(b^2+1)(c^2+1)≥(bc+1)^2
(c^2+1)(a^2+1)≥(ac+1)^2
=>[(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]≥1
=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3
=> Q ≥9/2
Dấu bằng xảy ra <=> a=b=c=1
P/s : trả công ( đùa tí :P )
#~Will~be~Pens~#
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Ta có: \(\frac{19a+3}{b^2+1}=\left(19a+3\right).\frac{1}{b^2+1}=\left(19a+3\right)\left(1-\frac{b^2}{b^2+1}\right)\)
\(\ge\left(19a+3\right)\left(1-\frac{b^2}{2b}\right)=\left(19a+3\right)\left(1-\frac{b}{2}\right)\)
\(=19a+3-\frac{19ab}{2}-\frac{3b}{2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{19b+3}{c^2+1}\ge19b+3-\frac{19bc}{2}-\frac{3c}{2}\)(2); \(\frac{19c+3}{a^2+1}\ge19c+3-\frac{19ca}{2}-\frac{3a}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(A=\frac{19a+3}{b^2+1}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)\(\ge19\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)
\(=\frac{35\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)
\(\ge\frac{35.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{19.3}{2}+9=\frac{105}{2}-\frac{57}{2}+9=33\)
Đẳng thức xảy ra khi a = b = c = 1.