Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và AM - GM có:
\(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}=\dfrac{a^6}{abc}+\dfrac{b^6}{abc}+\dfrac{c^6}{abc}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Dấu " = " khi a = b = c = 1
Vậy...
Lời giải khác:
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \frac{a^5}{bc}+abc\geq 2\sqrt{a^6}=2a^3\\ \frac{b^5}{ac}+abc\geq 2\sqrt{b^6}=2b^3\\ \frac{c^5}{ab}+abc\geq 2\sqrt{c^6}=2c^3\end{matrix}\right.\Rightarrow \frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq 2(a^3+b^3+c^3)-3abc\)
Mặt khác, cũng theo BĐT AM-GM:
\(a^3+b^3+c^3\geq 3abc\Rightarrow 2(a^3+b^3+c^3)-3abc\geq a^3+b^3+c^3\)
Kéo theo \(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\geq a^3+b^3+c^3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((a+b+1)(a+b+c^2)\geq (a+b+c)^2\Rightarrow a+b+1\geq \frac{(a+b+c)^2}{a+b+c^2}\)
\(\Rightarrow \frac{1}{a+b+1}\leq \frac{a+b+c^2}{(a+b+c)^2}\)
Tương tự cho các phân thức còn lại, suy ra:
\(1\leq \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}\leq \frac{a+b+c^2}{(a+b+c)^2}+\frac{b+c+a^2}{(a+b+c)^2}+\frac{c+a+b^2}{(a+b+c)^2}\)
\(\Leftrightarrow 1\leq \frac{2(a+b+c)+a^2+b^2+c^2}{(a+b+c)^2}\)
\(\Leftrightarrow (a+b+c)^2\leq 2(a+b+c)+a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac\leq a+b+c\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{9}\left(a+b+c\right)^3}=\dfrac{1^2}{1+\dfrac{1}{9}.1^3}=\dfrac{9}{10}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
Từ BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow VT\ge1+\dfrac{3}{\dfrac{\left(a+b+c\right)^2}{3}}\ge\dfrac{6}{a+b+c}\)
Cần chứng minh \(1+\dfrac{3}{\dfrac{t^2}{3}}-\dfrac{6}{t}\ge0\left(t=a+b+c\right)\)\(\Leftrightarrow\dfrac{\left(t-3\right)^2}{t^2}\ge0\)