Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) \(\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)
thật vậy\(2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\) =\(\left[\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\) (ÁP DỤNG BẤT ĐẲNG THỨC COSI)
ĐẲNG THỨC CUỐI ĐÚNG SUY RA ĐẲNG THỨC ĐẦU ĐƯỢC CHỨNG MINH
ta có \(\frac{a^3}{b}+ab\ge2a^2\)
do đó VT +(ab + bc + ca) \(\ge2a^2+2b^2+2c^2\)
hay VT \(\ge2a^2+2b^2+2c^2-\left(ab+bc+ca\right)\ge a^2+b^2+c^2\) (đpcm).
Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\) \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:
** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\); \(b^3+b^3+c^3\ge3b^2c\); \(c^3+c^3+a^3\ge3c^2a\)
Cộng từng vế ba bất đẳng thức trên
** Cách 2: Giả sử \(a\le b\le c\)
Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).
Or the following SOS:
* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)
\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)
\(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)
Áp dụng BĐT bunniacoxki ta có:
\(\left(b^2+\left(c+a\right)^2\right)\left(1+4\right)\ge\left(b+2\left(a+c\right)\right)^2\)
=> \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)
=> \(VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)
Cần CM \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)
<=>\(\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)
<=>\(\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)
Áp dụng bđt buniacoxki dạng phân thức ở vế trái:
=> \(VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)
\(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+c\right)^2}=\frac{9}{5}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
Mình chưa học lớp 9 nên không biết!!!!
Bó tay!!!
Đúng thì k nha mình còn -71 điểm giúp mình nha!!!!
Lời giải:
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\text{VT}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\geq \frac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a}\) $(1)$
Vì $a+b+c=1$ nên
\(a^2+b^2+c^2=(a+b+c)(a^2+b^2+c^2)=(a^3+ab^2+b^3+bc^2+c^3+ca^2)+(a^2b+b^2c+c^2a)\)
Áp dụng AM-GM:
\(a^3+ab^2\geq 2a^2b\). Tương tự cho $2$ cặp còn lại suy ra:
\(a^3+b^3+c^3+ab^2+bc^2+ca^2\geq 2(a^2b+b^2c+c^2a)\)
\(\Rightarrow a^2+b^2+c^2\geq 3(a^2b+b^2c+c^2a)\) $(2)$
Từ \((1),(2)\Rightarrow \text{VT}\geq 3(a^2+b^2+c^2)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=\frac{1}{3}$
a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(a=b=c=\frac{1}{2}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)
Khi a=b