K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Đặt \(a=x^3;b=y^3;c=z^3\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần tìm GTLN của \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng BĐT AM - GM, ta được: \(x.x.y\le\frac{x^3+x^3+y^3}{3}=\frac{2x^3+y^3}{3}\)(1) ; \(y.y.x\le\frac{y^3+y^3+x^3}{3}=\frac{2y^3+x^3}{3}\)(2)

Cộng theo vế của 2 BĐT (1) và (2), ta được: \(x^2y+xy^2\le x^3+y^3\)hay \(x^3+y^3\ge xy\left(x+y\right)\)

Kết hợp giả thiết xyz = 1 suy ra \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Tương tự, ta có: \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)\(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)

Cộng theo vế của 3 BĐT trên, ta được: \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{x+y+z}{x+y+z}=1\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1

12 tháng 10 2016

Áp dụng bđt Cauchy :

\(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân theo vế : \(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

Vậy Max abc = 1/8 khi a = b = c = 1/2

14 tháng 10 2016

7894561230++

9 tháng 1 2020

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)

Tươn tự rồi cộng vế theo vế:

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)

Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)

\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)

Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)

28 tháng 5 2018

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)

       \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)

Tương tự, ta có: 

\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)

Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)

P/s: Ko chắc

28 tháng 5 2018

Dùng cauchy-schawarz là ra nhé :)

NV
19 tháng 10 2020

Trước hết với các số dương x;y ta luôn có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(C=\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\)

\(C\le\frac{xyz}{xyz+xy\left(x+y\right)}+\frac{xyz}{xyz+yz\left(y+z\right)}+\frac{xyz}{xyz+zx\left(z+x\right)}\)

\(C\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)