Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC=\Delta DEF\) nên \(\widehat{A}\) = \(\widehat{D}\) = \(55^o\)
Ta có : \(\widehat{D}\) + \(\widehat{E}\) + \(\widehat{F}\) = \(180^o\)
\(\widehat{F}\) = \(180^o\) - \(\widehat{D}\) - \(\widehat{E}\)
\(\widehat{F}\) = \(180^o\)- \(55^o\) - \(75^o\)
\(\widehat{F}\) = \(50^o\)
Vì \(\Delta ABC=\Delta DEF\) nên \(\widehat{B}\) = \(\widehat{E}\) = \(75^o\)
trời ạ
ta có tam giác ABC= tam giác DEF
suy ra góc A = góc D , góc b = góc E , góc C = góc F
trong tam giác ABC CÓ góc A + góc B +góc C = 180 độ
mà góc A=55 độ , B = 75 độ
suy ra góc C =50 độ
mà góc C = góc F = 50 độ
góc D = góc A =55 độ
góc B = góc E = 75 độ
cho mình nha
thanhks
giải
Ta có : \(\Delta ABC=\Delta DEF\)
\(\Rightarrow\widehat{A}=\widehat{D}=55^0\)
\(\widehat{B}=\widehat{E}=75^0\)
Ta có tổng 3 góc trong một tam giác bằng 1800
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=\widehat{D}+\widehat{E}+\widehat{F}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(55^0+75^0\right)\)
\(\Rightarrow\widehat{C}=\widehat{F}=50^0\)
Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)
Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)
Hay A1 + 80 + B = 180 => A1 + B = 100 (1)
Do góc ADB + ADC = 180 (Kề bù)
=> 80+ ADC = 180
ADC = 100
Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)
A2 + 100 + C = 180
A2 + C = 80 (2)
Từ 1, 2, có: A2 + C + 20 = A1 + B = 100
=> A1 + C + 20 = A1 + 3/2C
3/2C - C = 20
=> 1/2C= 20
C= 40
Mà B = 3/2 C => B = 3/2 . 40 = 60
Xét tam giác ABC có: A+B+C = 180
hay A + 60+40=180
A= 80
Vậy ...........
2/
Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100
Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C
Xét tam giác IBC có:
B2+BIC+C2 = 180
(B2+C2) + BIC = 180
1/2 B + 1/2 C + BIC = 180
1/2 ( B+C) +BIC = 180
hay 1/2 . 100 + BIC = 180
BIC = 180 - 50
BIC = 130
Vậy ...
Bài 1:
A B C I E D H
Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)
Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)
Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)
Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)
Xét \(\Delta EAI\) và \(\Delta HAI\) có:
\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)
\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)
\(AI\) chung
\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)
\(\Rightarrow IE=IH\left(1\right)\)
Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)
\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)
2. A B C H K D E
Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)
=> BD = BE
Ta có: BD là phân giác ^ABC => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)
(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)
=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)
Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)
=> \(\Delta\)DEC cân tại E => DE = EC (3)
Từ D kẻ vuông góc với BC tại H và BA tại K.
D thuộc đường phân giác ^ABC ( theo t/c đường phân giác ) => DK = DH
Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED
=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )
=> DA = DE (4)
Từ (3) ; (4) => DA = EC
Vậy BC = BE + EC = BD + AD
Vì tam giác ABC= tam giác DHK
=> góc A= góc D (2 góc tg ứng)
góc B= góc H(2 góc tg ứng)
góc C= góc K (2 góc tg ứng)
Mà góc B= 35 độ => góc H= 35 độ
góc K= 100 độ => góc C= 100 độ
Xét tam giác ABC, có: góc A+ góc B+ góc C= 180 độ (định lí tổng 3 góc trong 1 tam giác)
=> góc A + 35 độ + 100 độ = 180 độ
=> góc A= 45 độ
Mà góc A= góc D
=> góc D= 45 độ
Vậy: tam giác ABC có: ___________
tam giác DHK có: _____________