K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Vì D nằm giữa A và C →AC=AD+DC→AC=AD+DC 

Mà D∈D∈ trung trực của BC
→DB=DC→DB=DC

Ta có : ΔABDΔABD có AB<AD+BD=AD+DC=ACAB<AD+BD=AD+DC=AC

image

24 tháng 5 2020
 

Vì D nằm giữa A và C →AC=AD+DC→AC=AD+DC 

Mà D∈D∈ trung trực của BC
→DB=DC→DB=DC

Ta có : ΔABD có AB<AD+BD=AD+DC=AC

28 tháng 5 2020

ôi dào , bài nhu thế này ta ko bt làm , phải làm sao đây ....?

8 tháng 5 2018

Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. Xét tam giác $ABE$ và $DBE$ có:
$AB=DB$ (gt)

$BE$ chung

$\widehat{BAE}=\widehat{BDE}=90^0$

$\Rightarrow \triangle ABE=\triangle DBE$ (ch-cgv)

b. 

Vì tam giác bằng nhau phần a suy ra $\widehat{ABE}=\widehat{DBE}$

Do đó $BE$ là phân giác $\widehat{ABD}$

Mà $ABD$ là tam giác cân tại $B$ nên phân giác $BE$ đồng thời là trung trực 

$\Rightarrow BE$ là trung trực của $AD$

-----

Hoặc bạn có thể chỉ ra:
$BA=BD$
$EA=ED$ 

$\Rightarrow BE$ là trung trực $AD$

c.

Xét tam giác $AEF$ và $DEC$ có:
$\widehat{AEF}=\widehat{DEC}$ (đối đỉnh) 

$AE=ED$ (cmt) 

$\widehat{FAE}=\widehat{CDE}=90^0$

$\Rightarrow \triangle AEF=\triangle DEC$ (g.c.g)

$\Rightarrow AF=DC$

Ta có:

$BA=BD$

$AF=DC$

$\Rightarrow BA+AF=BD+DC$ hay $BF=BC$ nên $BCF$ cân tại $B$

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ: