K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Hỏi đáp Toán

a,Cm đc tam giác AMB=tam giác EMC(c.g.c)

=>AB=CE(cctu)(đpcm)

b,Cm :tam giác AMB= tam giác EMC(c.g.c)

=>AC=BE(cctu) và ACB=ECB;BCE=CEG(cgtu)

=>AC//BE

Mà G thuộc AC=>CG//BE

=>GCE=BEC

Xét tam giác BCE và tam giác EGC có:

CE:chung;GCE=BEC;AC=BE

Do đó: tam giác BCE = tam giác EGC

=>BC=EG(dpcm)

c, Vì BCE=CEG=>BC//EG(1)

Cm tg tam giác BCE= tam giác EFB

=>CBE=BEF

=>BC//FE(2)

Từ (1) và (2) =>...(đpcm)

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

A B C D E F M K

Bài làm

a) Xét tam giác DMB và tam giác FEM có:

DM = ME ( M là trung điểm của DE )

\(\widehat{DMB}=\widehat{FME}\)( Hai góc đối đỉnh )

BM = MF ( M là trung điểm của BF )

=> Tam giác DMB và tam giác FEM ( c.g.c )

=> BD = FE ( 2 cạnh tương ứng )

b) Vì BD = CE ( giả thiết )

Mà BD = FE ( cmt )

=> CE = FE

=> ÈC cân tại E

=> \(\widehat{ECF}=\widehat{EFC}\)( Hai góc ở đáy )

c) Tự làm

# Học tốt #

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó; ΔAHB=ΔAHC

b: Xét ΔABC có

AH là đường trung tuyến

AG=2/3AH

Do đó: G là trọng tâm

=>M là trung điểm của AC

c: Vì G là trọng tâm của ΔABC

mà N là trung điểm của AB

nên C,G,Nthẳng hàng

11 tháng 3 2019

B C A D M E F

                                                  CM

a) Xét \(\Delta MBD\)và \(\Delta MEA\)có:

             \(\hept{\begin{cases}MD=MA\left(gt\right)\\\widehat{BMD}=\widehat{EMA}\left(2gocdoidinh\right)\\MB=ME\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MEA\left(c.g.c\right)\)

\(\Rightarrow AE=BD\)( 2 cạnh tương ứng )

b) Xét\(\Delta MAF\) và \(\Delta MDC\)có:

          \(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AMF}=\widehat{DMC}\left(2gocdoidinh\right)\\MF=MC\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MAF=\Delta MDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{MFA}=\widehat{MCD}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AF//BC\)              (1)

c) Vì \(\Delta MBD=\Delta MEA\)( cmt )

\(\Rightarrow\widehat{MEA}=\widehat{MBD}\) ( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AE//BC\)               ( 2)

Từ (1) và (2) \(\Rightarrow F,A,E\) thẳng hàng ( định lý Py - Ta - go )