Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
a, Vì EF là đường trung bình tg ABC nên EF//BC
Do đó BEFC là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\) (tg ABC cân tại A)
Vậy BEFC là hình thang cân
b, Ta có EF là đtb tg ABC nên \(EF=\dfrac{1}{2}BC\)
Mà \(EF=\dfrac{1}{2}MF\) (E là trung điểm MF) nên \(BC=MF\)
Mà EF//BC nên MF//BC
Do đó BMFC là hbh
tk
Giải thích các bước giải:
a, E là trung điểm của AB, F là trung điểm của AC ⇒ EF là đường trung bình của ΔABC
⇒ EF ║ BC ⇒ Tứ giác BEFC là hình thang
ΔABC cân tại A ⇒ ˆBB^ = ˆCC^
Hình thang BEFC có 2 góc kề 1 cạnh đáy bằng nhau
⇒ BEFC là hình thang cân (đpcm)
b, ΔABC cân tại A có AH là trung tuyến ⇒ AH cũng là đường cao hay AH ⊥ HC
Tứ giác AHCD có 2 đường chéo AC, HD cắt nhau tại F là trung điểm của mỗi đường
⇒ AHCD là hình bình hành mà AH ⊥ HC ⇒ AHCD là hình chữ nhật (đpcm)
c, AHCD là hình chữ nhật ⇒ AD ║ CH và AD = CH mà HB = HC ⇒ AD ║ HB và AD = HB
⇒ Tứ giác ABHD là hình bình hành ⇒ AH, BD giao nhau tại trung điểm của mỗi đường
Mặt khác ta có I là trung điểm của AH (Vì I ∈ EF là đường trung bình của ΔABC)
nên I cũng là trung điểm của BD hay B, I, D thẳng hàng (đpcm)
a: Xét ΔABC có
E là trung điểm của AB
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔABC
b: Xét tứ giác BEKC có KE//BC
nên BEKC là hình thang
mà \(\widehat{EBC}=\widehat{KCB}\)
nên BEKC là hình thang cân
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(AM=IK=\dfrac{BC}{2}=\dfrac{15}{2}=7.5\left(cm\right)\)
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC