Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \((1-a)(1-b)(1-c)\geq 0\)
\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)
\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)
\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)
Vì \(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)
\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)
Đẳng thức xảy ra khi \(b=c=1\) và \(a=0\)
cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Ta có: \(\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{xy}{x+y}\le\frac{1}{4}\left(x+y\right)\)
\(\Rightarrow\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(a+b\right)+\frac{1}{4}\left(b+c\right)+\frac{1}{4}\left(c+a\right)\)
\(=\frac{a+b+c}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=c\)
Theo giả thiết, ta có: \(ab+bc+ca+abc=4\)
\(\Leftrightarrow abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8\)\(=12+\left(ab+bc+ca\right)+4\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\)\(=\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)\)
\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
\(\Rightarrow a+b+c+6=12\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)-6+a+b+c\)
\(=\left(\frac{12}{a+2}+a-2\right)+\left(\frac{12}{b+2}+b-2\right)+\left(\frac{12}{c+2}+c-2\right)\)
Mặt khác: \(\frac{12}{a+2}+a-2=\frac{12+a^2-4}{a+2}=\frac{a^2+8}{a+2}\)
Tương tự: \(\frac{12}{b+2}+b-2=\frac{b^2+8}{b+2}\); \(\frac{12}{c+2}+c-2=\frac{c^2+8}{c+2}\)
Từ đó suy ra \(a+b+c+6=\frac{a^2+8}{a+2}+\frac{b^2+8}{b+2}+\frac{c^2+8}{c+2}\)
\(\ge\frac{\left(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\right)^2}{a+b+c+6}\)(Theo BĐT Bunyakovsky dạng phân thức)
\(\Rightarrow\left(a+b+c+6\right)^2\ge\left(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\right)^2\)
hay \(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\le a+b+c+6\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có BĐT sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
CM: \(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
<=> \(a^2+b^2+c^2-ab-bc-ca\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (*)
=> BĐT (*) LUÔN ĐÚNG !!!!
=> \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
=> \(3\left(ab+bc+ca\right)\le0\)
=> \(ab+bc+ca\le0\)
VẬY TA CÓ ĐPCM.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+ca\right)=0\)
Vì \(a^2+b^2+c^2\ge0\forall a;b;c\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(đpcm\right)\)
ta có a > 0 → b + c < 1
→ 4bc < (b + c)² < 1
→ bc < 1\4
tương tự với ab, ac là => dpcm
ta có a > 0 → b + c < 1
→ 4bc < (b + c)² < 1
→ bc < 1\4
tương tự với ab, ac là => dpcm
a+b+c=0=>(a+b+c)^2=0
=>a^2+b^2+c^2+2(ab+bc+ca)=0
=>2(ab+bc+ca)=-(a^2+b^2+c^2)
Ma a^2+b^2+c^2 > hoac = 0 => -(a^2+b^2+c^2)< hoac = 0
Do do : 2(ab+bc+ca) < hoac = 0
=>ab+bc+ca <hoac = 0