K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABD và ΔACB có

góc ABD=góc ACB

góc A chung

=>ΔABD đồng dạng với ΔACB

=>AB/AC=AD/AB

=>AD/2=2/4

=>AD=1cm

b: Xét ΔABK vuông tại K và ΔACH vuông tại H có

góc ABK=góc ACH

=>ΔABK đồng dạng với ΔACH

=>AK/AH=AB/AC=1/2

Xét ΔADK vuông tại K và ΔABH vuông tại H co

góc ADK=góc ABH

=>ΔADK đồng dạng với ΔABH

=>\(\dfrac{S_{ADK}}{S_{ABH}}=\left(\dfrac{AK}{AH}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABH}=4\cdot S_{AKD}\)

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc A chung

=>ΔABD đồng dạng với ΔACB

b: AD/AB=AB/AC

=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

31 tháng 3 2016

a)

xét tam giác ABD và tam giác ACB có:

góc A chung;góc ABD=góc ACB =>tam giác ABD đồng dạng tam giác ACB(đpcm)

=>AD/AB=AB/AC =>AD=AB*AB/AC=2*2/4=1.vậy AD=1cm

ta lại có

AC=AD+DC =>DC=AC-AD=4-1=3cm.vậy DC=3cm

b)xét tm giác ABH vuông tại H và tam giác ADK vuông tại K có:

góc ABH=góc ADK( do tam giác ABC đồng dạng tam giác ABD,cmt)

=>tam giác ABH đồng dạng tam giác ADK(g-g)

=>AB/AD=AH/AK=BH/DK

mà AB/AD=2/1

=>AB/AD=AH/AK=BH/DK=2/1

mặt khác:

diện tích tam giác ABH/diện tích tam giác ADK=k2

=(2/1)2=4/1

=>diện tích tam giác ABH=4 diện tích tam giác ADK(đpcm)

(câu b mk cũng kg bit đúng kg nữa,mk làm theo suy nghĩ của mk,có j sai,b góp ý giúp mk nhé)

11 tháng 5 2017

\(\Rightarrow\)mình không hiểu đoạn cuối cho lắm

a) Xét ΔABD vuông tại A và ΔECD vuông tại E có 

\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔABD\(\sim\)ΔECD(g-g)

b) Xét ΔABF có

K là trung điểm của AF(gt)

M là trung điểm của AB(gt)

Do đó: KM là đường trung bình của ΔABF(Định nghĩa đường trung bình của tam giác)

Suy ra: KM//BF(Định lí 2 về đường trung bình của tam giác)

mà BF\(\perp\)BC(gt)

nên KM\(\perp\)BC

Xét ΔCKB có 

KM là đường cao ứng với cạnh BC(cmt)

BA là đường cao ứng với cạnh CK(gt)

KM cắt BA tại M(gt)

Do đó: M là trực tâm của ΔCKB(Tính chất ba đường cao của tam giác)

Suy ra: BK\(\perp\)CM

hay BK\(\perp\)OC(Đpcm)

BÀI 1    Cho tam giác ABC có AB=2cm; AC=4cm. Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cko ^ABD=^ACB     a) C/m tam giác ABD đồng dạng với tam giác ACB     b) Tính AD, DC      c) Gọi AH là đường cao của t giác ABC , AE là đường cao của t giác ABD. Chứng tỏ SABH = 4SADEBÀI 2      Cho t giác ABC vuông tại A, đường cao AH       a) C/m t giác ABC đồng dạng t giác HBA       b) GỌi I, K lần lượt là hinhg chiếu...
Đọc tiếp

BÀI 1
    Cho tam giác ABC có AB=2cm; AC=4cm. Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cko ^ABD=^ACB
     a) C/m tam giác ABD đồng dạng với tam giác ACB
     b) Tính AD, DC
      c) Gọi AH là đường cao của t giác ABC , AE là đường cao của t giác ABD. Chứng tỏ SABH = 4SADE

BÀI 2
      Cho t giác ABC vuông tại A, đường cao AH

       a) C/m t giác ABC đồng dạng t giác HBA

       b) GỌi I, K lần lượt là hinhg chiếu của H lên AB, AC C/m AI.AB=AK.AC

       c) cko BC=10cm AH=4cm. TÍnh diện tích t giác AIK

BÀI 3

CKo t giác ABC vuông tại A có AB=6cm; AC=8cm. Qua Aker 1 đường thẳng d // với BC, vẽ CD vuông góc d(tại D)
        a) C/m 2 t giác ADC và CAB đồng dạng 
        b) Tính DC
        c) Tính diện tích hình thang vuông ABCD
CÁC BẠN AI BIẾT GIÚP MÌNH VỚI

 

0

a:Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

Do đó: ΔABD đồng dạng với ΔACB

b: Ta có: ΔABD đồng dạng với ΔACB

nên AD/AB=AB/AC
=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm