K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

1) Xét tứ giác AEBD:

\(\widehat{AEB}=\widehat{ADB}=90^o\left(BE\perp AE;AD\perp BD\right).\)

\(\Rightarrow\) Tứ giác AEBD nội tiếp đường tròn (dhnb).

\(\Rightarrow\) A; E; B; D cùng thuộc một đường tròn (O).

2) Tứ giác AEBD nội tiếp đường tròn (cmt).

\(\Rightarrow\) \(\widehat{ADE}=\widehat{ABE}.\)

hay \(\widehat{HDE}=\widehat{HBA}.\)

Xét ∆ HDE và ∆ HBA:

\(\widehat{HDE}=\widehat{HBA}\left(cmt\right).\)

\(\widehat{EHD}=\widehat{AHB}\) (Đối đỉnh).

\(\Rightarrow\Delta HDE\sim\Delta HBA\left(g-g\right).\)

3) Tứ giác AEBD nội tiếp đường tròn (cmt).

\(\Rightarrow\widehat{KDB}=\widehat{KAE}.\)

Xét ∆ KDB và ∆ KAE:

\(\widehat{KDB}=\widehat{KAE}\left(cmt\right).\)

\(\widehat{DKB}chung.\)

\(\Rightarrow\Delta KDB\sim\Delta KAE\left(g-g\right).\)

\(\Rightarrow\dfrac{KD}{KA}=\dfrac{KB}{KE}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow KD.KE=KB=KA\left(đpcm\right).\)

1: Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔHDE và ΔHBA có 

\(\widehat{HDE}=\widehat{HBA}\)

\(\widehat{DHE}=\widehat{BHA}\)

Do đó: ΔHDE∼ΔHBA

3: Xét ΔKDB và ΔKAE có 

\(\widehat{K}\) chung

\(\widehat{KDB}=\widehat{KAE}\)

Do đó: ΔKDB∼ΔKAE

Suy ra: KD/KA=KB/KE

hay \(KD\cdot KE=KA\cdot KB\)

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
19 tháng 2 2021

mot phan ba la gi?

một phần ba là , ví dụ là một cái bánh chia cho ba phần bạn đã hiểu chưa ? nếu chưa hiểu thì bảo mình nhé

16 tháng 5 2019

A B C O D E F K M H I

hình đây ạ

14 tháng 4 2021

a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘ˆBFC=90∘ 

Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.

b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB

Suy ra tứ giác BFMS là tứ giác nội tiếp.

Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.

c)

+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)

Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)

Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).

+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.

Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.

Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)

Ta có:

ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.

ΔAME∽ΔACSnên AM.AS = AE.AC.

Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.

Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.

Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)

Từ (3) và (4) suy ra HS // PI, hay KH // PI.

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D