Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với ab+bc+ca=1
=>\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
tương tự mấy cái kia rồi thay vào, ta có
A=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b),ta có \(a^2+2bc-1=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)
tương tự mấy cái kia, rồi thay váo, ta có
\(B=\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=1\)
^_^
Ta có: MS = (1+a2).(1+b2).(1+c2)
= (ab + ac + bc + a2).(ab + ac + bc + b2).(ab + bc + ac + c2)
= [ (a2 + ac) + (ab + bc) ] . [ (ab + b2) + (ac + bc) ] . [ (ab + bc) + (ac + c2) ]
= [ a(a + c) + b(a + c) ] . [ b(a + b) + c(a + b) ] . [ b(a + c) + c(a + c) ]
= (a + b)(a + c)(b + c)(a + b)(b + c)(a + c)
= (a + b)2(b + c)2(a + c)2 = TS
Vậy A = 1
Ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ab}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+bc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Cộng các đẳng thức trên ta được:
\(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)\(\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy \(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)0 (đpcm)
Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath
sửa đề lại: cho a,b.c khác nhau từng đôi một thỏa mãn a2 (b + c) = b2 (c + a) = 2000
a2 (b+c) = b2 (c+a) = 2000
<=> a2 (b+c) - b2 (c+a) = 0
<=> a2b + a2c - b2c - b2a = 0
<=> (a - b) (ab + ac + bc) = 0
Vì a khác b khác c => ab + ac + bc = 0
=> ab + ac = -bc => a (b + c) = -bc => a2 (b+c) = -abc = 2000
=> ac + bc = -ab => c (a + b) = -ab => c2 (a+b) = -abc = 2000
Vậy...............