Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc A chung
=>ΔAHB đồng dạng với ΔAKC
=>AH=AK
c: Xet ΔAKI vuông tại K và ΔAHI vuông tại H có
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>góc KAI=góc HAI
d: ΔABC cân tại A
mà AP là phân giác
nên P là trung điểm của BC
=>AP vuông góc BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
b: Xét ΔKAI vuông tại K và ΔHAI vuông tại H có
AI chung
AK=AH
Do đó: ΔKAI=ΔHAI
Suy ra: \(\widehat{KAI}=\widehat{HAI}\)
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
hay AI⊥BC tại P
a)xét 2 tam giác vuông AHB và AKC có:
\(\widehat{A}\) là góc chung
AB=AC (ΔABC cân tại A)
⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)
⇒BH=CK (2 cạnh tương ứng)
b) xét 2 tam giác vuông AHI và AKI có:
AH=AK (ΔAHB=ΔAKC)
AI là cạnh chung
⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)
⇒\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)
⇒AI là tia phân giác của\(\widehat{HAK}\)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chug
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM vuông góc BC
nen IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên HK//BC
a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI là phân giác góc A
k hộ mình nhé
a) Xét ΔACK và ΔABH
Ta có: ∠AKC = ∠AHB = 900 (gt)
AB = AC (ΔABC cân tại A)
∠BAC chung
nên ΔACK = ΔABH (cạnh huyền-cạnh góc vuông)
suy ra AH = AK
b) Ta có BH⊥AC; CK⊥AB(gt)
mà BH và CK cắt nhau tại I
nên I là trực tâm của ΔABC
suy ra AI là đường cao của ΔABC
mà ΔABC cân tại A
nên AI la Phân giác của ∠BAC