Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
zì BD là phân giác cua góc B
\(=>\frac{AD}{DC}=\frac{AB}{DC}\)
CE là tia phân giác góc E
\(=>\frac{AE}{EB}=\frac{AC}{BC}=\frac{AB}{BC}\)
\(=>\frac{AD}{DC}=\frac{AE}{EB}=>DE//BC\)( định lý ta lét đào )
\(=>\widehat{EDB}=\widehat{DBC}\left(soletrong\right)\)
mà \(\widehat{DBC}=\widehat{EBD}\)( phân giác )
\(=>\widehat{EBD}=\widehat{EDB}=>\Delta EBD\left(cân\right)\)
=> ED=EB=10cm
theo định lý ta lét : do ED//BC
\(\frac{ED}{BC}=\frac{AE}{AB}=\frac{AB-EB}{AB}=>\frac{AB-10}{AB}=\frac{10}{16}=>AB=26.67\)
a) Áp dụng định lí Ta-lét trong \(\Delta ABC\left(DE//BC\right)\)có :
\(\frac{AD}{AB}=\frac{DE}{BC}\Rightarrow\frac{AD}{AD+BD}=\frac{6}{16}\Rightarrow\frac{AD}{AD+10}=\frac{3}{8}\)
\(\Rightarrow8AD=3\left(AD+10\right)\Rightarrow8AD=3AD+30\Rightarrow8AD-3AD=30\)
\(\Rightarrow5AD=30\Rightarrow AD=\frac{30}{5}=6\)( cm )
b) Lấy \(F\in BC\)sao cho FC = 6cm, kẻ DF
Vì \(F\in BC\Rightarrow BF+FC=BC\)\(\Rightarrow BF+6=16\Rightarrow BF=16-6=10\)( cm )
Xét tứ giác DECF có :\(F\in BC;DE//BC\left(gt\right)\Rightarrow DE//FC\)mà \(DE=FC\left(=6cm\right)\)
\(\Rightarrow\)Tứ giác DECF là hình bình hành ( dhnb 3 ) \(\Rightarrow DF//EC\)( tính chất hình bình hành )
Hay \(DF//AC\left(E\in AC\right)\)
Áp dụng định lí Ta-lét trong \(\Delta ABC\left(DF//AC\right)\)có :
\(\frac{BD}{AB}=\frac{BF}{BC}\)Mà lại có : \(BF=BD\left(=10cm\right)\)( cmt )
\(\Rightarrow AB=BC\Rightarrow\Delta ABC\)cân tại B ( Định nghĩa t/g cân )
** : Xin lỗi vì vẽ hình xấu nên khó nhìn, cậu hãy dùng phần chứng minh để dựng hình sao cho chuẩn nhất nhé !
Cái hình mình vẽ tương đôi thôi, bạn cứ coi như là nó đều đi ha :))))
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
\(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}\)(t/c đường phân giác của tam giác)(1)
Xét ΔABC có
CE là đường phân giác ứng với cạnh AB(gt)
\(\Rightarrow\frac{AC}{BC}=\frac{AE}{EB}\)(t/c đường phân giác của tam giác)(2)
Ta có: ΔABC cân tại A(gt)
⇒AB=AC(3)
Từ (1), (2) và (3) suy ra
\(\frac{AE}{EB}=\frac{AC}{BC}=\frac{AD}{DC}\)
hay \(\frac{AE}{EB}=\frac{AD}{DC}\)
Xét ΔABC có \(\frac{AE}{EB}=\frac{AD}{DC}\)(cmt)
nên DE//BC(định lí talet đảo)(đpcm)