Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(\left\{{}\begin{matrix}S_{ABC}=\frac{1}{2}\cdot AI\cdot BC\\S_{BHC}=\frac{1}{2}\cdot HI\cdot BC\end{matrix}\right.\)
( với \(S_{ABC},S_{BHI}\) lần lượt là diện tích ΔABC, ΔBHI )
\(\Rightarrow\frac{S_{BHI}}{S_{ABC}}=\frac{\frac{1}{2}\cdot HI\cdot BC}{\frac{1}{2}\cdot AI\cdot BC}=\frac{HI}{AI}\)
+ Tương tự ta cm đc :
\(\frac{HD}{BD}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HE}{CE}=\frac{S_{AHB}}{S_{ABC}}\)
Do đó : \(\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}\)
\(=\frac{S_{ABC}}{S_{ABC}}=1\)
Bài 10:
a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔABE\(\sim\)ΔCBD(g-g)
b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có
\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)
Do đó: ΔHDA\(\sim\)ΔHEC(g-g)
Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)
hay \(HD\cdot HC=HE\cdot HA\)
Bài 11:
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
hay \(HE\cdot HB=HF\cdot HC\)
c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạngvới ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạngvới ΔAEC
b: Xet ΔIEB vuông tại E và ΔIDC vuông tại D có
góc EIB=góc DIC
=>ΔIEB đồng dạng với ΔIDC