Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác BAI và tam giác CAI, ta có:
AB = AC (giả thiết tam giác cân)
góc BAI = góc CAI (AI là tia phân giác góc A)
AI là cạnh chung
\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)
\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)
Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)
\(\Rightarrow\) AI vuông góc với BC
b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)
\(\Rightarrow\) AI là trung tuyến của tg ABC
Lại có: BD là trung tuyến của tg ABC
Mà AD giao với BC tại M nên M là trọng tâm của tg ABC
c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)
Áp dụng định lí Pitago vào tg vuông AIB có:
\(AB^2=BI^2+AI^2\)
\(\Rightarrow AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2=25-9=16\)
\(\Rightarrow\) \(AI=4\) (cm)
\(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)
Vậy AM = 8/3 (cm)
Chúc bạn học tốt !!!
a, Xét tam giác ABI và tam giác ACI có :
cạnh AI chung
góc IAB = góc IAC ( vì AI là phân giác góc A )
AB = AC ( tam giác ABC cân tại A )
Do đó : tam giác ABI = tam giác ACI ( c.g.c )
=> góc AIB = góc AIC ( hai góc tương ứng )
mà góc AIB và góc AIC là hai góc kề bù
=> góc AIB = góc AIC = \(\frac{180^0}{2}\)= 90độ
Vậy AI vuông góc với BC
b,Theo câu a : tam giác ABI = tam giác ACI
=> BI = CI ( cạnh tương ứng )
=> AI là đường trung tuyến của BC
Vì D là trung điểm của AC nên BD là đường trung tuyến của AC
mà BD và AI cắt nhau tại M
Vậy M là trọng tâm của tam giác ABC
c, Vì I là trung điểm của BC nên
BI = CI = \(\frac{BC}{2}=\frac{6}{2}\)= 3cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABI có :
\(AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2\)
\(\Rightarrow AI^2=16\)
\(\Rightarrow AI=4cm\)
Vì M là trọng tâm của tam giác ABC nên :
\(AM=\frac{2}{3}AI\)
\(\Rightarrow AM=\frac{2}{3}.4\approx2,7cm\)
Vậy AM \(\approx\)2,7cm .
Học tốt
a: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
b: Xét ΔBAC có
AI là đường trung tuyến
BD là đường trung tuyến
AI cắt BD tại M
Do đó: M là trọng tâm của ΔABC
c: BC=6cm nen BI=3(cm)
=>AI=4(cm)
hay AM=8/3(cm)
a) Có: △ABC cân tại A => AB=AC
và AI là tia p/g của góc ABC => góc BAI= góc CAI
Xét △ABI và △ ACI có
AI chung
góc BAI= góc CAI
AB=AC
=>△ABI = △ ACI (c.g.c)
b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC
=> AI cũng là đường trung tuyến của △ABC
có :D là trung điểm của AC
=> BD là đường trung tuyến của △ ABC
trong △ABC có
AI là đường trung tuyến thứ nhất
BD là đường trung tuyến thứ hai
Mà 2 đường này cắt nhau tại M
=> M là trọng tâm của △ABC
BI=CI=BC/2=3(cm)
Có : △ABC cân tại A ; AI là tia p/g của góc ABC
=> AI cũng là đường cao
=> AI⊥BC
=> △ABI vuông tại I
=> AI^2+ BI^2= AB^2
=> AI^2+9=25
AI^2 = 16
=> AI = 4( cm)
a)Xét tam giác AOM và tam giác BOM có:
góc OAM= góc OBM (=90 độ)
OM chung
góc AOM= góc BOM( Oz là tia phân giác)
=>tam giác AOM = tam giác BOM (cạnh huyền, góc nhọn)
=>OA=OB( 2 cạnh tương ứng)
gọi giao điểm của AB và Oz là I
Xét tam giác AIO và tam giác BIO có:
OI chung
góc AOI=góc BOI(Oz là tia phân giác)
OA=OB(cmt)
=> tam giác AIO = tam giác BIO(cgc)
=> AI=BI(2 cạnh tương ứng) (1)
=>góc AIO= góc BIO (2 góc tương ứng)
mà góc AIO+ góc BIO=180 độ( 2 góc kề bù)
=>góc AIO= góc BIO=1/2.180 độ=90 độ
=> AB vuông góc OM tại I (2)
Từ (1) và (2)=>OM là đường trung trực của đoạn thẳng AB
b)Xét tam giác OAC và tam giác OBD có:
góc OAC=góc OBD(=90 độ)
OA=OB (cmt)
góc O chung
=>tam giác OAC = tam giác OBD(g.c.g)
=>OC=OD(2 cạnh tương ứng)
Xét tam giác DMO và tam giác CMO có:
OM chung
góc DOM=góc COM(Oz là tia phân giác)
OD=OC(cmt)
=>tam giác DMO = tam giác CMO(c.g.c)
=>DM=CM(2 cạnh tương ứng)
=> tam giác DMC cân tại M
a) xét tam giác BAI và AIC có:
AB = AC (gt)
góc A1 = góc A2 ( AI là p/giác của góc A)
AI chung
=> tam giác BAI = tam giác AIC (c.g.c)
=> góc AIB = góc AIC (góc tương ứng)
ta có: góc AIB + góc AIC = 1800 (kkef bù)
=> 2 góc AIB = 1800
=> góc AIB = \(\frac{180^0}{2}=90^0\)
=> AI vuông góc BC
Vẽ hình ra nhé : ∆