K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2023

loading...  

b) \(AB=\sqrt{\left(-4-0\right)^2+\left(1-2\right)^2}=\sqrt{17}\)

\(AC=\sqrt{\left(-4-3\right)^2+\left(1+1\right)^2}=\sqrt{53}\)

\(BC=\sqrt{\left(0-3\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)

Nửa chu vi là:

\(P=\dfrac{AB+BC+AC}{2}=\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\)

Diện tích là:

\(S=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)

\(=\sqrt{\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{-\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}-\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}+\sqrt{53}-3\sqrt{2}}{2}}\)

\(=\dfrac{15}{2}\left(đvdt\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}}  = (4;3)\)

PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}}  = (4;3)\) làm VTPT là:

\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)

b) Ta có: \(\overrightarrow {BC}  = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}}  = 5\)

\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)

c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:

\({(x + 1)^2} + {(y - 3)^2} = 1\)

26 tháng 4 2023

a. Gọi pt đường thẳng BC là: \(\Delta:y=ax+b\)

Vì pt đi qua 2 điểm B và C nên ta thay lần lượt các điểm vào, ta được:

\(\left\{{}\begin{matrix}-2=a.3+b\\-4=a.6+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\6a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\0\end{matrix}\right.\)

Vậy pt đường thẳng BC là: \(y=-\dfrac{2}{3}x\)

b. \(d\left(A,\Delta\right)=\dfrac{\left|-\dfrac{2}{3}.\left(-1\right)+\left(-1\right).7\right|}{\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(-1\right)^2}}=\dfrac{19\sqrt{13}}{13}\)

c. \(BC=\sqrt{\left(6-3\right)^2+\left(-4+2\right)^2}=\sqrt{13}\)

\(\Rightarrow S_{ABC}=\dfrac{\sqrt{13}.\dfrac{19\sqrt{13}}{13}}{2}=\dfrac{19}{2}\)

27 tháng 4 2022

a) Ta có: \(\overrightarrow{\text{BC}}\) = (1; -7)

               \(\overrightarrow{\text{ }n_{\text{BC}}}\)= (7; 1)

PTTQ: 7(x - 5) + 1(y - 5) = 0

=> 7x - 35 + y - 5 = 0

=> 7x + y - 40 = 0

b) Ta có: \(\overrightarrow{\text{AC}}\) = (8; -6)

=> \(\text{AC}=\sqrt{8^2+6^2}=10\)

Phương trình đường tròn là:

              (x + 2)2 + (y - 4)2 = 100

c) (C): (x + 2)2 + (y - 4)2 = 100

Ta có: \(\text{AM}=\sqrt{2^2+5^2}=\sqrt{29}\)

Để HK ngắn nhất => d(A; Δ) lớn nhất

=> d(A; Δ) = AM => AM ⊥ Δ

=> \(\overrightarrow{\text{n}_{\Delta}}\) = \(\overrightarrow{\text{AM}}\)

=> \(\overrightarrow{\text{n}_{\Delta}}\) = (-2; -5)

=> \(\text{2}\left(x+4\right)+5\left(y+1\right)=0\)

=> \(\text{ }2x+5y+13=0\)