Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không vẽ hình nhé
1/ có EAD=BAD mà BAD=EDA (2 góc sltrong, ED//AB) nên EAD=EDA
2/ có EAD=EDA (cmt)
mà EAD=CEK (2 góc dồng vị, EK//AD) ; EDA=DEK (2 góc sltrong, EK//AD)
nên CEK=DEK => EK là tia p/g của DEC
\(\Delta ABC\)có đường phân giác AD
=> BÂD = DÂC
1/ Ta có:
DE // AB => BÂD = ^ADE [so le trong]
Mà BÂD = DÂC => EÂD = ^EDA
2/ Ta lại có:
AD // EK => EÂD = CÊK [đồng vị]
Mà EÂD = ^EDA
=> ^EDA = CÊK
Mà ^EDA = ^DEK [so le trong]
=> CÊK = DÊK
Vậy EK là tia phân giác của DÊC
a/
Ta có: AD //CE => AEC= BAD ( đồng vị) (1)
DAC= ACE ( sole trong) (2)
và AD là tia phân giác của góc BAC => BAD=DAC (3)
Từ (1), (2),(3) => ACE=AEC
b/
Ta có:
ABC + EAC=180 ( kề bù)
và AD là tia phân giác của ABC => DAC= \(\frac{ABC}{2}\)
AF là tia phân giác của EAC => FAC= \(\frac{EAC}{2}\)
Ta có: DAF= DAC+EAC
= \(\frac{ABC}{2}+\frac{EAC}{2}\)
= \(\frac{180}{2}\)
= 90
và AD // CE => DAF=AFE=90 ( sole trong)
=> AF vuông góc với CE
vì AD song song EC\(\rightarrow\)Góc DAC=góc ACE(2 góc so le trong)
\(\rightarrow\)Góc BAD=góc AEC(2 góc đồng vị)
mà góc BAD=DAC
\(\Rightarrow\)Góc AEC=ACE
\(\rightarrow\)Tg ACE cân tại A