K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

bình phương lên sau đó chuyển vế là đc

26 tháng 5 2015

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

26 tháng 5 2015

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

13 tháng 3 2018

a)AM-GM:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4\cdot a^4\cdot b^4\cdot c^4}=4a^2bc\)

\(a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được:

4\(\left(a^4+b^4+c^4+d^4\right)\ge4a^2bc+4ab^2c+4abc^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge abc\left(a+b+c\right)\)

13 tháng 3 2018

1 cách khác: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

\(2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2\sqrt{a^2b^4c^2}+2\sqrt{b^2a^2c^4}+2\sqrt{a^4b^2c^2}\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+abc^2+a^2bc=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

tương tự với câu b