K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

a)Xét tam giác APM có: AM < AP + PM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại) 

Xét tam giác ANM có: AM < AN + NM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại) 

=> 2AM < AP + PM + AN +NM (cộng vế với vế) (1) 

Lại có: AP = MN (t/c đường trung bình của tam giác ABC) (2) 

PM = AN (t/c đường trung bình của tam giác ABC) (3) 

Từ (1),(2),(3) => 2AM < 2AP + 2AN 

<=> 2AM < AB + AC (Do CP và BN là đường trung tuyến của tam giác ABC) 

<=> AM < 1/2 (AB+AC) (chia cả hai vế cho 2) 

b) 
* CM tương tự: 

-BN < 1/2 (AB+AC) 

-CP < 1/2 (AC+CB) 

AM < 1/2 (AB+AC) 

=> AM + BN + CP < 1/2 (AB+AC+AB+BC+AC+BC) 

<=>AM + BN + CP < AB+AC+BC (3) 
 

* Có: BG+GC > BC (Xét tam giác BGC) 

- GC+AG > AC (Xét tam giác CGA) 

- AG+BG > AB (Xét tam giác AGB) 

=> 2GB+2GC+2GA > AB+AC+BC 

<=>2.2/3BN + 2.2/3PC + 2.2/3AM > AB+AC+BC (t/c đường trung tuyến trong tam giác ABC) 

<=>4/3 (BN + PC + AM) > AB+AC+BC 

<=>BN+PC+AM > 3/4( AB+AC+BC ) (nhân cả hai vế với 3/4) (4) 

Từ (3),(4) => 3/4(AB+AC+BC) < AM+BN+CP < AB+AC+BC

♥Tomato♥

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...