Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)
\(\Rightarrow a+b+c\le\frac{a^3+b^3+c^3+6}{3}=3\)
\(\Rightarrow\hept{\begin{cases}a< 3\text{ }\Rightarrow\text{ }3-a>0\\b+c\le3-a\end{cases}}\)
\(P=3a\left(b+c\right)+bc\left(3-a\right)\le3a\left(b+c\right)+\frac{\left(b+c\right)^2}{4}.\left(b+c\right)\)
\(=\frac{1}{4}\left[12a\left(b+c\right)+\left(b+c\right)^3\right]\le\frac{1}{4}\left[12a\left(3-a\right)+\left(3-a\right)^3\right]\)
\(=\frac{1}{4}\left[12a\left(3-a\right)+\left(3-a\right)^3-32\right]+8\)
\(=-\frac{1}{4}\left(a+1\right)\left(a-1\right)^2+8\le8\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Vậy \(\text{Max }P=8\)
Ta có:
\(\left(\sqrt{a}.\dfrac{\sqrt{a}}{\sqrt{4a+3bc}}+\sqrt{b}\dfrac{\sqrt{b}}{\sqrt{4b+3ac}}+\sqrt{c}\dfrac{\sqrt{c}}{\sqrt{4c+3ab}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)
\(=2\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)
Nên ta chỉ cần chứng minh:
\(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4a}{4a+3bc}+\dfrac{4b}{4b+3ac}+\dfrac{4c}{4c+3ab}\le2\)
\(\Leftrightarrow\dfrac{3bc}{4a+3bc}+\dfrac{3ac}{4b+3ac}+\dfrac{3ab}{4c+3ab}\ge1\)
\(\Leftrightarrow\dfrac{bc}{4a+3bc}+\dfrac{ac}{4b+3ac}+\dfrac{ab}{4c+3ab}\ge\dfrac{1}{3}\)
Thật vậy, ta có:
\(VT=\dfrac{\left(bc\right)^2}{4abc+3\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{4abc+3\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{4abc+3\left(ab\right)^2}\)
\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+12abc}=\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+6abc\left(a+b+c\right)}\)
\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab+bc+ca\right)^2}=\dfrac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=...\)
Áp dụng liên tiếp AM - GM và Cauchy - Schwarz ta có :
\(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left(a^2+b^2\right)}}\)
\(=\frac{a^2+ab+1}{\sqrt{a^2+ab+1}}\)
\(=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\)
\(=\frac{1}{\sqrt{5}}\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+a^2+c^2\right]}\)
\(\ge\frac{1}{\sqrt{5}}\left[\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{4}b+a+c\right]\)
\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
Chứng minh tương tự và công lại ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(M=\dfrac{1}{\dfrac{c}{a}+\dfrac{2a}{b}+3}+\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{c}+3}+\dfrac{1}{\dfrac{b}{c}+\dfrac{2c}{a}+3}\)
\(đặt\left(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a}\right)=\left(x;y;z\right)\Rightarrow xyz=1\left(x;y;z>0\right)\)
\(M=\dfrac{1}{z+2x+3}+\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}\)
\(ta\) \(đi\) \(cminh:A\le\dfrac{1}{2}\)
có:
\(\dfrac{1}{z+2x+3}\le\dfrac{1}{6}\Leftrightarrow z+2x+3\ge6\Leftrightarrow2x+z\ge3\)
\(\dfrac{1}{x+2y+3}\le\dfrac{1}{6}\Leftrightarrow x+2y\ge3\)
\(\dfrac{1}{y+2z+3}\le\dfrac{1}{6}\Rightarrow y+2z\ge3\)
\(cộng\) \(vế\Rightarrow2x+z+2y+x+2z+y\ge9\Leftrightarrow x+y+z\ge3\left(đúng\right)\)
\(do:x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow A\le\dfrac{1}{2}dấu"="\Leftrightarrow x=y=z=1\Rightarrow a=b=c\)