Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)
\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)
Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)
\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)
\(VT=\frac{a^3+b^3+c^3}{4abc}\)
Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm )
\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm )
Chúc bạn học tốt ~
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)
\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)
Cộng vế:
\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)
\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đặt :
\(A=\)\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)}\)
\(=\dfrac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}+\dfrac{b^4}{\left(b^2-c^2+a^2\right)\left(b^2+c^2-a^2\right)}+\dfrac{c^4}{\left(c^2-a^2+b^2\right)\left(c^2+a^2-b^2\right)}\)
Ta có : \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
Tương tự :
+) \(a^2-b^2+c^2=-2ac\)
+) \(b^2+c^2-a^2=-2bc\)
\(\Leftrightarrow A=\dfrac{a^4}{\left(-2ac\right)\left(-2ab\right)}+\dfrac{b^4}{\left(-2ab\right)\left(-2bc\right)}+\dfrac{c^4}{\left(-2bc\right)\left(-2ac\right)}\)
\(=\dfrac{a^4}{4a^2bc}+\dfrac{b^4}{4ab^2c}+\dfrac{c^4}{4abc^2}\)
\(=\dfrac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}\)
\(=\dfrac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\) (cậu tự chứng minh \(a^3+b^3+c^3=3abc\) nhé)
\(=\dfrac{3a^2b^2c^2}{4a^2b^2c^2}\)
\(=\dfrac{3}{4}\)
Vậy..
đặt biể thức cần chứng minh là P
\(\dfrac{a}{\left(b+c\right)^2}=\dfrac{a^2}{a\left(b+c\right)^2}=\dfrac{\dfrac{a^2}{\left(b+c\right)^2}}{\dfrac{a\left(b+c\right)^2}{\left(b+c\right)^2}}=\dfrac{\left(\dfrac{a}{b+c}\right)^2}{a}\)
\(t\)ương tự
\(=>P\ge\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2}{a+b+c}\)
\(=>P\ge\dfrac{[\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}]^2}{a+b+c}\)
\(=>P\ge\dfrac{[\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}]^2}{a+b+c}=\dfrac{[\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}]^2}{a+b+c}\)
\(=>P\ge\dfrac{\dfrac{9}{4}}{a+b+c}=\dfrac{9}{4\left(a+b+c\right)}\) dấu"=" xảy ra<=>a=b=c
\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Dấu "=" xảy ra khi \(a=b=c\)