Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này easy thôi:
Áp dụng BĐT schwarz ta có:
\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)
Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)
nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)
Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)
Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)
Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)
cho a>0, b>0, c>0, a+b+c\(\le\)1
tìm min của p=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
Ta có \(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)
\(b+ac=\left(b+a\right)\left(b+c\right)\)
\(c+ab=\left(a+b\right)\left(c+b\right)\)
Đặt \(a+b=x;b+c=y;a+c=z\)=> \(x+y+z=2\)
Khi đó \(P=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
Áp dụng BĐT cosi \(\frac{xy}{z}+\frac{yz}{x}\ge2y\); \(\frac{yz}{x}+\frac{xz}{y}\ge2z\);\(\frac{xy}{z}+\frac{xz}{y}\ge2z\)
Cộng 3 BĐT trên
=> \(P\ge x+y+z=2\)
Vậy MinP=2 khi a=b=c=1/3
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)