Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - Si , ta có :
\(\dfrac{a}{b^2}+\dfrac{1}{a}\) ≥ \(2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2.\dfrac{1}{b}\left(a,b>0\right)\left(1\right)\)
\(\dfrac{b}{c^2}+\dfrac{1}{b}\text{ ≥ }2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2.\dfrac{1}{c}\left(b,c>0\right)\left(2\right)\)
\(\dfrac{c}{a^2}+\dfrac{1}{c}\text{≥}2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2.\dfrac{1}{a}\left(a,c>0\right)\left(3\right)\)
Từ ( 1 ; 2 ; 3) Ta có :
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≥ \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
⇔\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\) ≥ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Áp dụng BĐT Cô si dạng phân số ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
=> ĐPCM .
b) Vì a,b,c > 0 .
Áp dụng BĐT Cô si ta có :
\(\dfrac{a^2}{b}+b\ge2a\) (1)
Tương tự ta có : \(\dfrac{b^2}{c}+c\ge2b\) (2)
\(\dfrac{c^2}{a}+a\ge2c\) (3)
Cộng từng vế => ĐPCM .
Ta có:
\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
\(=a+b+c-\dfrac{ab^2}{1+b^2}-\dfrac{bc^2}{1+c^2}-\dfrac{ca^2}{1+a^2}\)
\(\ge3-\dfrac{ab^2}{2b}-\dfrac{bc^2}{2c}-\dfrac{ca^2}{2a}\)
\(=3-\dfrac{1}{2}\left(ab+bc+ca\right)\ge3-\dfrac{1}{2}.\dfrac{\left(a+b+c\right)^2}{3}\)
\(=3-\dfrac{3}{2}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
a) Áp dụng bất đẳng thức AM-GM ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2\sqrt{c^2}=2\left|c\right|=2c\left(c>0\right)\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\\\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\left(đpcm\right)\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta được:
\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)}{a+b}-\dfrac{b^2}{a+b}=b-\dfrac{b^2}{a+b}\)
Chứng minh tương tự:
\(\left\{{}\begin{matrix}\dfrac{bc}{b+c}=\dfrac{bc+c^2-c^2}{b+c}=\dfrac{c\left(b+c\right)}{b+c}-\dfrac{c^2}{b+c}=c-\dfrac{c^2}{b+c}\\\dfrac{ac}{c+a}=\dfrac{ac+a^2-a^2}{c+a}=\dfrac{a\left(c+a\right)}{c+a}-\dfrac{a^2}{c+a}=a-\dfrac{a^2}{c+a}\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\le\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)
b)Đặt \(A=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(A=\dfrac{a\left(a+b\right)-a^2}{a+b}+\dfrac{b\left(b+c\right)-b^2}{a+b}+\dfrac{c\left(c+a\right)-c^2}{c+a}\)
\(A=a+b+c-\dfrac{a^2}{a+b}-\dfrac{b^2}{b+c}-\dfrac{c^2}{c+a}\)
Lại có:\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
\(\Rightarrow A\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)
\(\Rightarrowđpcm\)
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
Đề sai, ngược dấu rồi.
Ta chứng minh BĐT phụ sau: \(\dfrac{x}{x+1}\le\dfrac{9}{16}x+\dfrac{1}{16}\left(\forall x\in0;1\right)\)
Thật vậy: \(\dfrac{x}{x+1}\le\dfrac{9}{16}x+\dfrac{1}{16}\)
\(\Leftrightarrow0\le\dfrac{9x+1}{16}-\dfrac{x}{x+1}\)
\(\Leftrightarrow0\le\dfrac{\left(9x+1\right)\left(x+1\right)-16x}{16\left(x+1\right)}\)
\(\Leftrightarrow0\le9x^2-6x+1=\left(3x-1\right)^2\)(Luôn đúng \(\forall x\in0;1\))
Áp dụng vào bài, ta được:
\(\dfrac{a}{a+1}\le\dfrac{9}{16}a+\dfrac{1}{16}\)
\(\dfrac{b}{b+1}\le\dfrac{9}{16}b+\dfrac{1}{16}\)
\(\dfrac{c}{c+1}\le\dfrac{9}{16}c+\dfrac{1}{16}\)
Cộng vế theo vế ta được đpcm
Xét:
\(\dfrac{a^2}{b^2+c^2}-\dfrac{a}{b+c}=\dfrac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\dfrac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\left(1\right)\)
Tương tự:
\(\dfrac{b^2}{c^2+a^2}-\dfrac{b}{c+a}=\dfrac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\) (2)
\(\dfrac{c^2}{a^2+b^2}-\dfrac{c}{a+b}=\dfrac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\) (3)
Cộng từng vế (1)(2)(3) ta được:
\(\left(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\right)-\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\dfrac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}\right]+ac\left(a-c\right)\left[\dfrac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]+bc\left(b-c\right)\left[\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\) => ĐPCM
Áp dụng BĐT AM - GM, ta có:
\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\)
\(\ge\dfrac{3\sqrt{a^3b^3c^3}}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{a^2+c^2}{b^2+\dfrac{a^2+c^2}{2}}\)
\(\ge\dfrac{3abc}{2abc}+\dfrac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}+\dfrac{2\left(b^2+c^2\right)}{2a^2+b^2+c^2}+\dfrac{2\left(a^2+c^2\right)}{2b^2+a^2+c^2}\)
\(=\dfrac{3}{2}+2\times\left[\dfrac{a^2+b^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\dfrac{b^2+c^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\dfrac{c^2+a^2}{\left(b^2+c^2\right)+\left(b^2+a^2\right)}\right]\) (1)
Đặt \(\left\{{}\begin{matrix}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{matrix}\right.\), ta có:
\(\left(1\right)\Leftrightarrow\dfrac{3}{2}+2\times\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)
\(\ge\dfrac{3}{2}+2\times\dfrac{3}{2}\) (Bất_đẳng_thức_Nesbitt)
\(=\dfrac{9}{2}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c
Đặt P=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Không mất tính tổng quát giả sử a ≥b ≥ c , thế thì \(\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\ge\dfrac{1}{a+b}\) .Áp dụng bất đẳng thức Chebyshev cho hai dãy đơn điệu cùng chiều ta có :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{1}{3}\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\left(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\right)\)
Hay \(P\ge\dfrac{1}{3}\left(P+3\right)\) nghĩa là \(P\ge\dfrac{3}{2}^{\left(đpcm\right)}\)