Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Câu a/ Thì chứng minh ở dưới rồi nhé e
b/ Ta cần chứng minh
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)
\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)
=> ĐPCM
c/ Ta có
\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)
Cái này là áp dụng câu a vô nhé e
Ta có :
\(\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)
\(\Rightarrow dpcm\)
a) Ta có: \(a+b+c=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(b+a+c\right)\right]\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b) Ta có: \(a+b+c=0\)
\(\Rightarrow2abc\left(a+b+c\right)=0\)
\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)
Ta lại có:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)(chứng minh câu a)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
b/ Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{1}{2}\left[\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{c^2}{a^2}\right)\right]\)
\(\ge\frac{1}{2}.\left(\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\right)=\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Ta có \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2acb^2+2abc^2\)
\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)
Ta lại có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có (ab+bc+ca)2=a2b2+b2c2+c2a2+2a2bc+2acb2+2abc2
=a2b2+b2c2+c2a2+2abc(a+b+c)=a2b2+b2c2+c2a2
Ta lại có
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0
⇔(a2+b2+c2)2=4(ab+bc+ca)2
⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4(ab+bc+ca)2
⇔a4+b4+c4+2(ab+bc+ca)2=4(ab+bc+ca)2
⇔a4+b4+c4=2(ab+bc+ca)2
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
a) Ta có: \(a+b+c=0\)
\(\Rightarrow2abc\left(a+b+c\right)=0\)
\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)
Ta lại có:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\) (cái này bạn tự chứng minh nha)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\left(đpcm\right)\)
b) Ta có: \(a+b+c=0\)
\(\Rightarrow a=-\left(b+c\right)\)
\(\Rightarrow a^2=b^2+c^2+2bc\)
\(\Rightarrow a^2-b^2-c^2=2bc\)
\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=4b^2c^2+2a^2b^2+2a^2c^2-2b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\left(đpcm\right)\)
Chúc bạn học tốt và tíck cho mìk vs nhé!
Cảm ơn bạn