Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)
Ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)
\(\Rightarrow\frac{a+b-2c}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
\(\Rightarrow\frac{a}{c}+\frac{b}{c}-2=\frac{c}{b}+\frac{a}{b}=\frac{b}{a}+\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
=> a+b-c/c = 1 => a+b-c = c => a+b = 2c
b+c-a/a = 1 => b+c-a = a => b+c = 2a
c+a-b/b = 1 => c+a-b = b => c+a = 2b
=> P = \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{c}{b}\right)\cdot\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
Câu hỏi của vũ ngọc vân - Toán lớp 7 - Học toán với OnlineMath
Em nhấn vào link trên để xem đáp án.
Ta có :
\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)
Lại có :
\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)
Từ (1) và (2) \(\RightarrowĐPCM\)