K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 1 2023

Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)

\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$

Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$

$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$

Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$

Áp dụng BĐT Bunhiacopxky:

$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$

$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$

Vậy $P_{\min}=11+2\sqrt{30}$

Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$

18 tháng 1 2023

Con cảm ơn cô ạ

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 1:

Từ \(a+b+c=0\) ta có:

\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)

\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 2:

Lấy P-Q ta có:

\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)

\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)

\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)

Ta có đpcm.

21 tháng 5 2022

Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)

\(\Rightarrow a+b+c\ge3\)

Phân tích và áp dụng BĐT AM-GM:

\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)

Tương tự:

\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)

\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)

Cộng các vế của các BĐT ta được:

\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)

\(P=6\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=6\)

 

8 tháng 3 2019

\(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ac+a^2}\)

\(=\left(\frac{a^3+b^3}{a^2+ab+b^2}-b+a\right)+\left(\frac{b^3+c^3}{b^2+bc+c^2}-c+b\right)+\left(\frac{c^3+a^3}{c^2+ac+a^2}-a+c\right)\)

\(=2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}\right)\)

\(=2....\) ( đề thiếu )

14 tháng 10 2018

Mysterious Persontran nguyen bao quanDƯƠNG PHAN KHÁNH DƯƠNG

NV
3 tháng 3 2021

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy_ Schwarz ta có:

\(\text{VT}=\frac{a^6}{a^3+a^2b+ab^2}+\frac{b^6}{b^3+b^2c+bc^2}+\frac{c^6}{c^3+c^2a+ca^2}\)

\(\geq \frac{(a^3+b^3+c^3)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+c^2a+ca^2}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a^3+b^3+c^3)^2}{a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(a+c)}\) (I)

Áp dụng BĐT Am-Gm ta có:

\(\left\{\begin{matrix} a^3+a^3+b^3\geq 3a^2b\\ b^3+b^3+c^3\geq 3b^2c\\ c^3+c^3+a^3\geq 3c^2a\end{matrix}\right.\Rightarrow 3(a^3+b^3+c^3)\geq 3(a^2b+b^2c+c^2a)\)

\(\Leftrightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a\) (1)

Tương tự:

\(\left\{\begin{matrix} a^3+b^3+b^3\geq 3ab^2\\ b^3+c^3+c^3\geq 3bc^2\\ c^3+a^3+a^3\geq 3ca^2\end{matrix}\right.\Rightarrow 3(a^3+b^3+c^3)\geq 3(ab^2+bc^2+ca^2)\)

\(\Leftrightarrow a^3+b^3+c^3\geq ab^2+bc^2+ca^2(2)\)

Từ \((1);(2)\Rightarrow 2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(c+a)\)

\(\Rightarrow a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(c+a)\leq 3(a^3+b^3+c^3)\) (II)

Từ \((I);(II)\Rightarrow \text{VT}\geq \frac{(a^3+b^3+c^3)^2}{a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(a+c)}\geq \frac{(a^3+b^3+c^3)^2}{3(a^3+b^3+c^3)}\)

\(\Leftrightarrow \text{VT}\geq \frac{a^3+b^3+c^3}{3}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)