K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)

\(\Rightarrow a=b=c=d\)

\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)

9 tháng 4 2016

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b\)                       \(c=\frac{2d}{2}=d\)

\(b=\frac{2c}{2}=c\)                               \(d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

23 tháng 8 2017

A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha

9 tháng 10 2015

bn lik e bai mjh dc ko 

9 tháng 10 2015

2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d  

\(\Leftrightarrow\)a+a+b+c+d/a=a+b+b+c+d/b=a+b+c+c+d/c=a+b+c+d+d/d  

\(\Leftrightarrow\)a+b+c+d/a+1=a+b+c+d/b+1=a+b+c+d/c+1=a+b+c+d/d+1  

\(\Leftrightarrow\)a+b+c+d/a=a+b+c+d/b=a+b+c+d/c=a+b+c+d/d  

Dến đây ta xét 2 TH:  

a+b+c+d≠0  

a+b+c+d=0

4 tháng 7 2016

a/b=b/c=c/d=d/a=(a+b+c+d)/(b+c+d+a)=1

>a=b=c=d>tự tính

26 tháng 10 2020

Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Khi a + b + c + d = 0

=> a + b = -(c + d)

b + c = -(a + d)

Khi đó \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)

\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)= -4

Nếu a + b + d + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)

Vậy khi a + b + c + d = 0 => M = -4

khi a + b + c + d \(\ne\)0 => M = 4

21 tháng 2 2018

áp dụng tính chất dãy tỉ số = nhau ta có

a/b=b/c=c/d=d/a=a=b=c=d/b=c=d=a=1

suy ra; M=2a-a/a+a+2a-a/a+a+2a-a.a+a+2a-a/a+a

=a/2a*4=2

Vậy M=2

23 tháng 10 2015

Cho biểu thức sau:$\frac{2a+b+c+d}{a}$2 a + b + c + d a bam vao do nho bam lik e :\