Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
Cách giải đơn giản nhất là khai triển
\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)
\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)
\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)
Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)
và tương tự với các biểu thức còn lại.
Suy ra BĐT \((\star)\) luôn đúng.
Ta có đpcm
Đây chính là một dạng của BĐT Chebyshev:
Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)
Câu 2:
Tương tự câu 1 thôi.
Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)
\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)
Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)
\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)
Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)
Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)
\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)
Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)
Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.
\(\Rightarrow a^7\left(a-b\right)+b^7\left(b-a\right)>=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^7-b^7\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot A>=0\), với A>=0
=>Điều này luôn đúng
áp dụng bất đằng thức buinhia
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow1\le2\left(a^2+b^2\right)\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(\left(a^2+b^2\right)^2\le\left(\left(a^2\right)^2+\left(b^2\right)^2\right)2\Leftrightarrow\left(\frac{1}{2}\right)^2\le2\left(a^4+b^4\right)\Rightarrow a^4+b^4\ge\frac{1}{8}\)
bài cuối tương tự
a, \(a^2+b^2\ge\frac{1}{2}\)
Với mọi a, b ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Mà a + b = 1 \(\Rightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy \(a^2+b^2\ge\frac{1}{2}\)( đpcm )
Các câu b, c tương tự
Áp dụng bđt Cauchy-Schwarz:
\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{1}{2}\right)^2}{2}=\dfrac{1}{8}\)
\(a^8+b^8\ge\dfrac{\left(a^4+b^4\right)^2}{2}\ge\dfrac{\left(\dfrac{1}{8}\right)^2}{2}=\dfrac{1}{128}\)
Ta có: \(\frac{a^2}{b}+\frac{b^2}{a}+7\left(a+b\right)\ge8\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow a^3+b^3+7ab\left(a+b\right)\ge8ab\sqrt{2\left(a^2+b^2\right)}\)
Ta có: \(VP=8\sqrt{ab}\sqrt{\left(a^2+b^2\right)\cdot2ab}\le^{am-gm}4\sqrt{ab}\left(a+b\right)^2\)
\(VT=\left(a+b\right)\left[\left(a+b\right)^2+4ab\right]\ge^{am-gm}\left(a+b\right)4\sqrt{ab}\left(a+b\right)\ge VP\)
=> ĐPCM
Không mất tính tổng quát giả sử \(a\ge b\)
BĐT\(\Leftrightarrow a^7\left(a-1\right)+b^7\left(b-1\right)\ge0\)
\(\Leftrightarrow a^7\left(a-\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(b-\dfrac{1}{2}a-\dfrac{1}{2}b\right)\ge0\)
\(\Leftrightarrow a^7\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(\dfrac{1}{2}b-\dfrac{1}{2}a\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)\left(a^7-b^7\right)\ge0\)(luôn đúng vì \(a\ge b\))
\(\Rightarrowđpcm\)
Cái đề này sao sao ý :
\(a^8\ge a^7vs\forall a\)
\(b^8\ge b^7vs\forall b\)
\(\Rightarrow a^8+b^8\ge a^7+b^7vs\forall ab\)
Đâu cần a + b =2 âu
Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1)
\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng )
=> (1) đúng
Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)
\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)
Dấu "=" xảy ra khi \(a=b=1\)
Thay b = 2 - a vào phân tích ta được:
VT - VP =