K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)

\(=-27-18=-45\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

1. Đề sai với $a=1; b=0; c=-1$

2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)

3. Đề sai.

$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$

$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$

$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$

$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$

$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$

$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$

$=abc(5c^2-5ab)=5abc(c^2-ab)$

2:Ta có: a+b+c=0

nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

11 tháng 7 2021

`a)a(2+b)+b(a+2)`

`=2a+ab+ab+2b`

`=2(a+b)+2ab`

`=2.10+2.(-36)`

`=20-72=-52`

`b)a^2+b^2`

`=(a+b)^2-2ab`

`=10^2-2.(-36)`

`=100+72=172`

`c)a^3+b^3`

`=(a+b)(a^2-ab+b^2)`

`=10[(a+b)^2-3ab]`

`=10[10^2-3.(-36)]`

`=10(100+108)`

`=10.208=2080`

11 tháng 7 2021

a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)

b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)

c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)

\(=10\left[10^2-3\left(-36\right)\right]=2080\)

12 tháng 1 2017

Với ab = 6, a + b = –5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (–5)3 – 3.6.(–5) = –53 + 3.6.5 = –125 + 90 = –35

b) Ta có: \(a^2+b^2\)

\(=\left(a-b\right)^2+2ab\)

\(=3^2+2\cdot\left(-2\right)=9-4=5\)

c) Ta có: \(a^3-b^3\)

\(=\left(a-b\right)^3-3ab\left(a-b\right)\)

\(=3^3-3\cdot\left(-2\right)\cdot3\)

\(=27+18=45\)

13 tháng 7 2021

cho mình hỏi yêu cầu đề bài là gì vậy?

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)