K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

minh hoc lop 10 k cho minh roi minh giup

12 tháng 5 2017

đấy cũng gọi là câu trả lời à!

NV
18 tháng 6 2020

\(S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\)

\(S\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\)

\(S\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{a+b}=2-\frac{4}{a+b+2}+\frac{1}{a+b}\)

Đặt \(a+b=t\Rightarrow0< t\le1\)

\(S\ge\frac{5}{3}+\frac{t+3}{3t}-\frac{4}{t+2}=\frac{5}{3}+\frac{t^2-7t+6}{3t\left(t+2\right)}=\frac{5}{3}+\frac{\left(6-t\right)\left(1-t\right)}{3t\left(t+2\right)}\ge\frac{5}{3}\)

\(S_{min}=\frac{5}{3}\) khi \(t=1\Leftrightarrow x=y=\frac{1}{2}\)

19 tháng 6 2020

Cảm ơn nha

9 tháng 11 2016

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2\sqrt{2^2}}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}\cdot2ab}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{1}{2}+2\cdot8+\frac{1}{2}=17\)

30 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)

\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)

\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)

\(\ge24+2+2\cdot4+2\cdot9=52\)

Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)

20 tháng 3 2022

Ta có: \(1=4\left(a+b\right)+\sqrt{ab}\ge4.2\sqrt{ab}+\sqrt{ab}=9\sqrt{ab}\Leftrightarrow\sqrt{ab}\le\dfrac{1}{9}\Leftrightarrow ab\le\dfrac{1}{81}\)

  \(\Rightarrow\dfrac{1}{ab}\ge\dfrac{1}{\dfrac{1}{81}}=81\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{9}\)

16 tháng 5 2016

Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1