K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

a+b=0 => a=(-b)

=>A=a^2+b^2=a^2+(-a)^2=a^2+a^2=2.a^2\(\ge\)2.0=0

Dấu = xảy ra khi a^2=0 =>a=0 =>b=0

Vậy Amin=0 khi và chỉ khi a=b=0

8 tháng 5 2016

a)

xét f(x)=0

=>3x-6=0

=> 3x=6

=> x=2

vậy nghiệm của f(x) là 2

xét g(t)=0

=> -4t-8=0

=> -4t=8

=> t=-2

vậy nghiệm của g(t) là -2

b)

f(x)=1=> 3x-6=1

=> 3x=7

=> x=7/3

g(t)=1=> -4t-8=1

=> -4t=9

=> t=-9/4

1 tháng 5 2022

a)

xét f(x)=0

=>3x-6=0

=> 3x=6

=> x=2

vậy nghiệm của f(x) là 2

xét g(t)=0

=> -4t-8=0

=> -4t=8

=> t=-2

vậy nghiệm của g(t) là -2

b)

f(x)=1=> 3x-6=1

=> 3x=7

=> x=7/3

g(t)=1=> -4t-8=1

=> -4t=9

=> t=-9/4

15 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)

26 tháng 11 2016

Lam giup minh voi

a: \(A=\dfrac{19}{5}xy^2\cdot x^3y=\dfrac{19}{5}x^4y^3\)

b: Hệ số là 19/5 và bậc là 7

c: Khi x=1 và y=2 thì \(A=\dfrac{19}{5}\cdot1^4\cdot2^3=\dfrac{19}{5}\cdot8=\dfrac{152}{5}\)