Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cm: CO = CD
Xét tam giác HDA vuông tại H ( CH vuông góc AB )
* góc HDA + góc HAD = 90 độ
Mà góc HDA = góc CDO ( đối đỉnh )
=> góc CDO + góc HAD = 90 độ
=> góc CDO + góc BAO = 90 độ
Xét tam giác COD vuông tại C ( CA là tiếp tuyến)
* góc COA + góc CAO = 90 độ
=> góc COD + góc CAO = 90 độ
Ta có : góc COD + góc CAO = 90 độ (cmt)
góc CDO + góc BAO = 90 độ (cmt)
Mà góc CAO = góc BAO (AO là tia phân giác ; tính chất của 2 tiếp tuyến cắt nhau)
=> góc COD = góc CDO
Xét tam giác COD có:
* góc COD = góc CDO (cmt)
=> tam giác COD cân tại C
=> CO = CD (tính chất)
b) Cm: I là trung điểm của OH
Trong đường tròn tâm O:
* O là tâm
* CE là dây
* M là trung điểm của CE
=> OM vuông góc với CE ( hệ quả của tính chất đường kính qua trung điểm dây) (1**)
Xét tứ giác OMHB có:
* góc MHB = 90 độ ( CH vuông góc AB )
* góc OBH = 90 độ ( AB là tiếp tuyến )
* góc OMH = 90 độ ( OM vuông góc CE )
=> tứ giác OMHB là hình chữ nhật (2**)
=> OB = MH
Ta có: OB vuông góc AB ( BA là tiếp tuyến)
MH vuông góc AB ( CH vuông góc AB )
=> OB // MH
Xét tam giác OIB và tam giác HIM có:
* góc IBO = góc IMH (OB // MH)
* OB = HM (cmt)
* góc BOI = góc MHI (OB // MH)
=> tam giác OIB = tam giác HIM (g-c-g)
=> OI = HI (tính chất)
Mà I nằm giữa O,H
=> I là trung điểm OH
P/S:
(1**): tính chất này bạn xem lại SGK, mình nhớ không rõ tên gọi.
(2**): từ đây có thể suy ra trung điểm (tính chất 2 đường chéo cắt nhau tại trung điểm mỗi đường), do không chắc lắm nên mình mới xét tam giác.
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng